Skip to main content
Log in

Precipitation-Hardening Austenitic Steel for Fast Neutron Reactors

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The properties of conventional stainless reactor steels of the Kh16N15M3 type transformed into precipitation-hardening steels with the help of optimum alloying are studied after irradiation by a flux of fast neutrons. The pore characteristics and the total irradiation-induced swelling are determined. The aging steel Kh16N15MT1 is suggested as a radiation-resistant material for fast neutron reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Pugh, “Voids formed by irradiation of reactor materials,” J. Br. Nucl. Energy Soc., 10(3), 159–164 (1971).

    Google Scholar 

  2. Pughs, et al. (eds.), Proc. BNES Conf. on Voids Formed by Irradiation of Reactor Materials (1971).

  3. J. W. Corbett and L. C. Ianniello (eds.), Proc. Albany Conf. on Radiation-Induced Voids in Metals, USAEC Symp. Ser. (1972).

  4. Proc. Conf. on Effect of Radiation on Substructure and Mechanical Properties of Metals and Alloys, ASTM STP 529 (1973).

  5. W. G. Johnston, J. H. Rosolowsky, A. M. Turkalo, and T. Lauritzen, “Nickel bombardment of annealed and cold-worked type 316 stainless steel,” J. Nucl. Mater., No. 48, 330–338 (1973).

    Google Scholar 

  6. H. R. Brager, “The effect of cold working and pre-irradiation heat treatment on void formation in neutron-irradiation type 316 stainless steel,” J. Nucl. Mater., No. 57, 103–113 (1975).

    Google Scholar 

  7. P. A. Garner and W. G. Wolfer, “The effect of solute addition on void nucleation,” J. Nucl. Mater., No. 102, 143–150 (1981).

    Google Scholar 

  8. W. G. Johnston, J. H. Rosolowsky, A. M. Turkalo, and T. Lauritzen, “An experimental survey of swelling in commercial Fe – Cr – Ni alloys bombarded with 5 MeV ions,” J. Nucl. Mater., No. 54, 24–40 (1974).

    Google Scholar 

  9. H. Kurishita, T. Miroga, H. Watanabe, et al., “Effect of FFTF irradiation on tensile properties of P and Ti modified austenitic alloys with small amounts of boron,” J. Nucl. Mater., No. 212, 519–525 (1994).

    Google Scholar 

  10. I. Shibahara, N. Akasaka, S. Onose, et al., “Swelling of advanced austenitic stainless steels for the environment of heavy neutron exposure,” J. Nucl. Mater., Nos. 212 – 215, 487–491 (1994).

    Google Scholar 

  11. A. N. Orlov, A. M. Parshin, and Yu. V. Trushin, “Physical aspects of weakening of radiation swelling of structural alloys,” Zh. Teor. Fiz., 53, Issue 12, 2367–2372 (1983).

    Google Scholar 

  12. F. A. Garner, “Irradiation performance of cladding and structural steels in liquid metal reactors,” in: B. R. T. Frost (ed.), Nuclear Materials; Mater. Sci. Techn., No. 10, 419–543 (1993).

  13. V. V. Sagaradze, V. A. Pavlov, V. M. Alyab'ev, et al., “Effect of intermetallic aging in fast neutron irradiation on pore formation in austenitic stainless steels,” Fiz. Met. Metalloved., 65, Issue 5, 970–977 (1988).

    Google Scholar 

  14. V. M. Alyab'ev, V. G. Vologin, S. F. Dubin, et al., “Neutron diffraction and electron-microscopic study of the processes of decomposition and irradiation-stimulated aging of Cr – Ni – Ti austenitic steels,” Fiz. Met. Metalloved., No. 8, 142–148 (1990).

    Google Scholar 

  15. V. V. Sagaradze, V. M. Nalesnik, S. S. Lapin, and V. M. Alyab'ev, “Precipitation hardening and radiation damageability of austenitic stainless steels,” J. Nucl. Mater., No. 202, 137–144 (1993).

    Google Scholar 

  16. V. V. Sagaradze and S. S. Lapin, “Nontraditional approaches to hindering the irradiation swelling of stainless steels,” Fiz. Met. Metalloved., 84, Issue 4, 129–144 (1997).

    Google Scholar 

  17. V. V. Sagaradze, S. S. Lapin, B. N. Goshchitskii, and M. A. Kirk, “Influence of high-dose Kr+ irradiation on structural evolution and swelling of 16Cr – 15Ni – 3Mo – 1Ti aging steel,” J. Nucl. Mater., 256, 287–298 (1999).

    Google Scholar 

  18. A. S. Bakai and N. M. Kigykin, “Precipitate evolution in aged alloys under irradiation,” Ques. Atom. Sci. Tech. (Kharkov, USSR), No. 5, 33–40 (1983).

    Google Scholar 

  19. V. V. Sagaradze, V. M. Koloskov, B. N. Goshchitskii, and V. A. Shabashov, “Dissolution kinetics of intermetallics in aging austenitic steels during neutron irradiation,” J. Nucl. Mater., 307311, 317–321 (2002).

    Google Scholar 

  20. Yu. V. Konobeev and S. I. Golubov, “State of the theory of radiation damage,” in: Proc. Int. Conference on Material Science, Vol. 10 [in Russian], Alushta (1990), pp. 142–171.

  21. P. J. Maziasz, “ Formation and stability of radiation-induced phases in neutron-irradiated austenitic and ferritic steels,” J. Nucl. Mater., No. 169, 95–115 (1989).

    Google Scholar 

  22. A. M. Dvoriaskin, V. D. Dinitriev, and V. S. Khabarov, “The effect of radiation on materials,” in: 15th Int. Symp. ASTM STP 1125, Philadelphia (1999), pp. 1180–1189.

  23. P. Dubuisson, D. Gilbon, and J. L. Seran, “Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phoenix,” J. Nucl. Mater., No. 205, 178–189 (1993).

    Google Scholar 

  24. D. S. Gelles, “Void swelling resistance in Fe – Cr alloys at 200 dpa,” in: Mater. Res. Soc. Symp. Proc., No. 373 [in Russian] (1995), pp. 69–74.

  25. V. V. Sagaradze, V. A. Arbuzov, B. N. Goshchitskii et al, “Effect of tritium and neutron irradiation at 77 K on the physicomechanical properties of reactor stainless steels,” Fiz. Met. Metalloved., No. 84, Issue 3, 167–176 (1997).

    Google Scholar 

  26. V. V. Sagaradze, V. L. Arbuzov, S. S. Lapin, Yu. N. Zuev, et al., “The influence of hydrogen isotopes and radiogenic helium on the structure and mechanical properties of radiation-resistant steels with a composite alpha-gamma structure,” J. Am. Nucl. Soc., 286(3), Part 2, 1274–1277 (1995).

    Google Scholar 

  27. B. N. Goshchitskii, V. V. Sagaradze, V. L. Arbuzov, et al., “The use of the tritium trick for analysis of the fluence that hydrogen and helium exert on the mechanical properties of radiation-resistant precipitation-hardening FCC steels,” J. Am. Nucl. Soc., 286(3), Part 2, 1165–1168 (1995).

    Google Scholar 

  28. V. V. Sagaradze, V. A. Shabashov, et al., “Low-temperature deformation dissolution of Ni3Al(Ti, Si, Zr) intermetallic phases in Fe – Ni alloys with f.c.c. lattice,” Fiz. Met. Metalloved., 78, Issue 6, 49–61 (1994).

    Google Scholar 

  29. V. V. Sagaradze and A. I. Uvarov, Hardening of Austenitic Steels [in Russian], Nauka, Moscow (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagaradze, V.V., Goshchitskii, B.N., Arbuzov, V.L. et al. Precipitation-Hardening Austenitic Steel for Fast Neutron Reactors. Metal Science and Heat Treatment 45, 293–299 (2003). https://doi.org/10.1023/A:1027340620675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027340620675

Keywords

Navigation