Skip to main content
Log in

Development and Application of a Novel Technique for Direct Heat Flux Measurements in Turbomachinery Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The high performance and efficiency of modern gas turbines are only possible with temperatures inside the engine exceeding the allowed material temperatures in some areas by several hundred degrees. Therefore effective cooling methods are one of the key factors for the success of these engines. In order to achieve reliable predictions of the heat load of rotor or stator blades numerous research activities were performed to understand the nature of heat transfer in complex unsteady flows. Even numerical methods have made significant progress in recent years detailed experimental data are still necessary for validation and further development of the engines and the design tools. Here a new method to directly measure the heat flux \({\dot q}\) at the material surface and accurately determine the heat transfer coefficienth is presented. The new sensor is based on the anisotropic characteristics of single crystals and allows the determination of the time varying heat flux on the surface of a model turbine airfoil. This feature is of special interest to study the influence of periodically disturbed flow conditions on the heat transfer characteristics of cooled turbine blades. The working principle of an anisotropic heat flux (AHF) sensor is briefly described together with the design of the actual sensor used in this study. Prior to the application of the sensor in a cascade test rig, comprehensive test of the sensor, the electronics and the data acquisition system were performed using a pulsed laser beam as heat source. To test the sensor under realistic conditions a large number of sensor was installed in a test blade and heat transfer measurements were performed in a cascade test rig equipped with a spoke-wheel wake generator. The results showed good agreement in the time mean results compared with standard techniques. Additionally time resolved data could be extracted from the sensor signals providing detailed information on the unsteady heat transfer characteristics and boundary layer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binder, A., Förster, W., Kruse, H. and Rogge, H., An experimental investigation into the effect of wakes on the unsteady turbine rotor flow. Journal of Engineering for Gas Turbines and Power 107 (1985) 458–466.

    Article  Google Scholar 

  2. Diller, T.E., Advances in heat flux measurements. Advances in Heat Transfer 23 (1993) 279–368.

    Google Scholar 

  3. Divin, N., Kirillov, A. and Sapozhnikov, S., Gradientenartiger Messgeber für die Messung des Wärmestroms. In: 6. Kolloquium Messtechnik für Energieanlagen, Dresden (1996) pp. 155–162.

  4. Doorly, D.J. and Oldfield, M.L.G., Simulation of the effects of shock wave passing on a turbine rotor blade. ASME, Journal of Engineering for Gas Turbines and Power 107 (1985) 998–1006.

    Google Scholar 

  5. Dullenkopf, K., Untersuchungen zum Einfluss periodisch instationärer Nachlaufströmungen auf den Wärmeübergang konvektiv gekühlter Gasturbinenschaufeln. Dissertation, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe (1992).

  6. Dullenkopf, K., Schulz, A. and Wittig, S., The effect of incident wake conditions on the mean heat transfer of an airfoil. ASME, Journal of Turbomachinery 113 (1991) 412–418.

    Google Scholar 

  7. Dullenkopf, K. and Mayle, R.E., The effect of incident turbulence and moving wakes on laminar heat transfer in gas turbines. ASME, Journal of Turbomachinery 116 (1994) 23–28.

    Article  Google Scholar 

  8. Dullenkopf, K., Suslov, D. and Wittig, S., Time Resolved Heat Transfer; Sensor Development and Exemplary Measurements, Colloquium Periodically Unsteady Flows in Turbomachinery, Berlin (2002).

  9. Dunn, M.G., George, W.K., Rae, W.J., Woodward, S.H., Moller, J.C. and Seymour, P.J., Heat-flux measurements for the rotor of a full-stage turbine: Part II. Description of analysis technique and typical time resolved measurements. ASME, Journal of Turbomachinery 108 (1986) 98–107.

    Article  Google Scholar 

  10. Epstein, A.H., Guenette, G.R. and Norton, R.J.G., TheMIT Turbine Blowdown Facility. ASME Paper 84–GT-116 (1984).

  11. Halstead, D.E., Wisler, D.C., Okiishi, T.H., Walker, G.J., Hodson, H.P. and Shin, H.-W., Boundary layer development in axial compressors and turbines, Parts 1 to 4. ASME, Journal of Turbomachinery 119 (1997).

  12. Hatman, A. and Wang, T., A prediction model for separated-flow transition. ASME Paper 98–GT-237 (1998).

  13. Hirsch, C. (ed.), Advanced Methods for Cascade Testing (1993) AGARD-AG-328.

  14. Merker, G.P., Konvektive Wärmeübertragung. Springer-Verlag, Heidelberg (1987).

    Google Scholar 

  15. Schiele, R., Sieger, K., Schulz, A. and Wittig, S., Heat transfer investigations on highly loaded, aerothermaly designed turbine cascade. In: Billig, F. (ed.), Proceedings of 12th International Symposium on Air Breathing Engines, Melbourne (1995) pp. 1091–1101.

  16. Schultz, D.L. and Jones, T.V., Heat transfer measurements in short duration hypersonic facilities. AGARD-AG-165 (1973).

  17. Schulz, A., Zum Einfluss hoher Freistromturbulenz, intensiver Kühlung und einer Nachlaufströmung auf den äußeren Wärmeübergang einer konvektiv gekühlten Gasturbinenschaufel. Dissertation, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe (1986).

  18. Suslov, D., Zum Einfluss periodisch instationärer Nachlaufströmungen auf das aerothermische Verhalten konvektiv gekühlter Gasturbinenschaufeln. Dissertation, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe (2002).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suslov, D., Dullenkopf, K., Schulz, A. et al. Development and Application of a Novel Technique for Direct Heat Flux Measurements in Turbomachinery Flows. Flow, Turbulence and Combustion 69, 249–270 (2002). https://doi.org/10.1023/A:1027336028216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027336028216

Navigation