Skip to main content
Log in

Biochemistry of Mechanoenzymes: Biological Motors for Nanotechnology

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Nanotechnology produces and exploits moieties whose valuable properties are attributable to their precise structure sub-micron architectures, and promises to be among the most important emerging scientific areas of the 21st century (Feynman, 1959; Lee, 1998a,b). The dearth of wholly synthetic, functional nanocomponents is a major technological impediment to this endeavor at present (Lowe, 2000). This lack is particularly critical for complex functionalities such as molecular motors, sensing devices and other applications requiring the ordered interaction of multiple nanocomponents (Lee et al., in press-a, press-b). Nature has evolved a selection of (nanoscale) mechanoenzymes that transduce chemical energy into mechanical energy in living creatures. While it is possible to create limited synthetic nanomotors (Lowe, 2000), it is also feasible to build hybrid (synthetic-biological) nanodevices that contain mechanoenzymes. Synthetic nanomaterials can be used to organize functional biological macromolecules such that the construct can perform useful work. Such devices are called nanobiological or nanobiotechnological devices (Jelinski, 1999; Lee, 1998a,b; Lee et al., in press-a, press-b), and the general strategy is becoming an orthodox approach to the construction of functional nanostructures, particularly for therapeutic nanodevices. A number of nanobiological devices incorporating mechanoenzymes have been constructed in the course of characterization of biological motors (Ishijima and Yanagida, 2001; Mehta et al., 1999a,b; Vale et al., 1996; Vale and Toyoshima, 1988; Walker et al., 2000; Yang et al., 1990). For instance, microtubules (and other filamentous protein structures, see below) have been immobilized to substrates in cell-free systems and used as tracks to guide the transport of membrane vesicles or synthetic cargos by motor proteins that are cognates of the protein filaments. Conversely, motor proteins have been attached to substrates and used to transport “shuttles” composed of fragments of the cognate protein filaments (Dennis et al., 1999). Proteins often exhibit multileveled modularity, in which particular functions of polypeptides are often delimited to particular domains of a protein or to particular proteins of a multiprotein complex. It is often possible to isolate desired functions as small domains of proteins or multiprotein subassemblies from larger supramolecular complexes, and assemble those isolated functional domains into a nanobiological device. This strategy is as applicable to mechanoenzymes as it is to other biological structures, and several have been isolated from their native contexts and assembled into functional nanobiological devices (Dennis et al., 1999; Hess et al., 2002; Noji et al., 1997; Soong et al., 2000; Spudich et al., 1985; Vale et al., 1985; Yanagida et al., 1984). While we agree that exhaustive knowledge of mechanism is not required to build semi-biological nanodevices (Drexler, 1999), successful use of mechanoenzymes in nanodevices nonetheless requires sophisticated knowledge of their diversity and biochemical and physical properties. In this review we will discuss a selection of available mechanoenzymes, describe briefly how they function in biological systems, and provide a perspective on their strengths and limitations as prefabricated components of nanobiological devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.P. Abrahams, A.G. Leslie, R. Lutter, and J.E. Walker, Nature 370, 621 (1994).

    Google Scholar 

  • W.B. Amos, Nature 229, 127 (1971).

    Google Scholar 

  • Y. Arata, J.D. Baleja, and M. Forgac, Journal of Biological Chemistry 277, 3357 (2002).

    Google Scholar 

  • I. Arechanga and P.C. Jones, FEBS Letters 494, 1 (2001).

    Google Scholar 

  • D.J. Asai and M.P. Koonce, Trends in Cell Biology 11, 196 (2001).

    Google Scholar 

  • J.P. Baker and M.A. Titus, Current Opinion in Cell Biology 10, 80 (1998).

    Google Scholar 

  • J.S. Berg, B.C. Powell, and R.E. Cheney, Molecular Biology of the Cell 12, 780 (2001).

    Google Scholar 

  • R.M. Berry and J.P. Armitage, Advances in Microbial Physiology 41, 291 (1999).

    Google Scholar 

  • H.C. Blair, S.L. Teitelbaum, R. Ghiselli, and S. Gluck, Science 245, 855 (1989).

    Google Scholar 

  • P.D. Boyer, Mol. Cell 8, 246 (2001).

    Google Scholar 

  • D. Bray, Cell Movements: From Molecules to Motility (Garland Publishing, New York, 2001).

    Google Scholar 

  • S. Breton, T. Wiederhold, V. Marshansky, N.N. Nsumu, V. Ramesh, and D. Brown, Journal of Biological Chemistry 275, 18219 (2000).

    Google Scholar 

  • T.L. Bullock, A.J. McCoy, H.M. Kent, T.M. Roberts, and M. Stewart, Nature Structural Biology 5, 184 (1998).

    Google Scholar 

  • S.A. Burgess, M.L. Walker, H. Sakakibara, P.J. Knight, and K. Oiwa, Nature 421, 715 (2003).

    Google Scholar 

  • L.A. Cameron, M.J. Footer, A. van Oudenaarden, and J.A. Theriot, Proceedings of the National Academy of Sciences of the United States of America 96, 4908 (1999).

    Google Scholar 

  • R.B. Case, D.W. Pierce, N. Hom-Booher, C.L. Hart, and R.D. Vale, Cell 90, 959 (1997).

    Google Scholar 

  • G.M. Cheetham, D. Jeruzalmi, and T.A. Steitz, Nature 399, 80 (1999).

    Google Scholar 

  • G.M. Cheetham and T.A. Steitz, Science 286, 2305 (1999).

    Google Scholar 

  • J. Condeelis, Trends in Cell Biology 11, 288 (2001).

    Google Scholar 

  • A. De Lozanne and J.A. Spudich, Science 236, 1086 (1987).

    Google Scholar 

  • J.R. Dennis, J. Howard, and V. Vogel, Nanotechnology 10, 232 (1999).

    Google Scholar 

  • I. Domgall, D. Venzke, U. Lüttge, R. Ratajczak, and B. Böttcher, Journal of Biological Chemistry 277, 13115 (2002).

    Google Scholar 

  • K.E. Drexler, Trends in Biotechnology 17, 5 (1999).

    Google Scholar 

  • D.L. Dujardin and R.B. Vallee, Current Opinion in Cell Biology 14, 44 (2002).

    Google Scholar 

  • S.A. Endow and H. Higuchi, Nature 406, 913 (2000).

    Google Scholar 

  • R.P. Feynman, in Miniaturization, D. Gilbert (ed.), Reingola, New York, NY, 1961, pp. 282-296 (American Physical Society, California Institue of Technology, Pasadena, CA, 1959).

    Google Scholar 

  • A. Frattini, P.J. Orchard, C. Sobacchi, S. Giliani, M. Abinun, J.P. Mattsson, D.J. Keeling, A.K. Andersson, P. Wallbrandt, L. Zecca, L.D. Notarangelo, P. Vezzoni, and A. Villa, Nature Genetics 25, 343 (2000).

    Google Scholar 

  • H. Funabiki and A.W. Murray, Cell 102, 411 (2000).

    Google Scholar 

  • M.A. Gee, J.E. Heuser, and R.B. Vallee, Nature 390, 636 (1997).

    Google Scholar 

  • B.H. Gibbons and I.R. Gibbons, Journal of Biological Chemistry 262, 8354 (1987).

    Google Scholar 

  • I.R. Gibbons, Cell Motility and the Cytoskeleton 32, 136 (1995).

    Google Scholar 

  • I.R. Gibbons, B.H. Gibbons, G. Mocz, and D.J. Asai, Nature 352, 640 (1991).

    Google Scholar 

  • S. Gluck and J.A. Caldwell, Journal of Biological Chemistry 262, 15780 (1987).

    Google Scholar 

  • S.L. Gluck, B.S. Lee, S.P. Wang, D. Underhill, J. Nemoto, and L.S. Holliday, Acta Physiologica Scandinavica Supplementum 643, 203 (1998).

    Google Scholar 

  • U. Goodenough and J.E. Heuser, Journal of Molecular Biology 180, 1083 (1984).

    Google Scholar 

  • R. Guajardo and R. Sousa, Journal of Molecular Biology 265, 8 (1997).

    Google Scholar 

  • A. Haaf, L.R. LeClaire, G. Roberts, H.M. Kent, T.M. Roberts, M. Stewart, and D. Neuhaus, Journal of Molecular Biology 284, 1611 (1998).

    Google Scholar 

  • A. Habura, I. Tikhonenko, R.L. Chisholm, and M.P. Koonce, Journal of Biological Chemistry 274, 15447 (1999).

    Google Scholar 

  • D.D. Hackney, Annual Review of Physiology 58, 731 (1996).

    Google Scholar 

  • U. Henningsen and M. Schliwa, Nature 389, 93 (1997).

    Google Scholar 

  • H. Hess, J. Clemmens, J. Howard, and V. Vogel, Nano Letters 2, 113 (2002).

    Google Scholar 

  • H. Higuchi and S.A. Endow, Current Opinion in Cell Biology 14, 50 (2002).

    Google Scholar 

  • T. Hirata, A. Iwamoto-Kihara, G.-H. Sun-Wada, T. Okajima, Y. Wada, and M. Futai, Journal of Biological Chemistry 278, 23714 (2003).

    Google Scholar 

  • H. Hoffman-Berling, Biochimica et Biophysica Acta 27, 247 (1958).

    Google Scholar 

  • L.S. Holliday, M. Lu, B.S. Lee, R.D. Nelson, S. Solivan, L. Zhang, and S.L. Gluck, Journal of Biological Chemistry 275, 32331 (2000).

    Google Scholar 

  • K. Homma, M. Yoshimura, J. Saito, R. Ikebe, and M. Ikebe, Nature 412, 831 (2001).

    Google Scholar 

  • J. Huang and R. Sousa, Journal of Molecular Biology 303, 347 (2000).

    Google Scholar 

  • A.J. Hunt and J. Howard, Proceedings of the National Academy of Sciences of the United States of America 90, 11653 (1993).

    Google Scholar 

  • A. Ishijima and T. Yanagida, Trends in Biochemical Science 26, 438 (2001).

    Google Scholar 

  • J.E.J. Italiano, T.M. Roberts, M. Stewart, and C.A. Fontana, Cell 84, 105 (1996).

    Google Scholar 

  • J.E.J. Italiano, M. Stewart, and T.M. Roberts, Journal of Cell Biology 146, 1087 (1999).

    Google Scholar 

  • L. Jelinski, in Nanostructure Science and Technology, edited by R.W. Siegel, E. Hu and M.C. Roco (Kluwer Academic Publishers, Dordrecht, 1999), p. 113.

    Google Scholar 

  • A. Kamal and L.S. Goldstein, Current Opinion in Cell Biology 14, 63 (2002).

    Google Scholar 

  • P.M. Kane and K.J. Parra, Journal of Experimental Biology 203, 81 (2000).

    Google Scholar 

  • F.E. Karet, K.E. Finberg, R.D. Nelson, A. Nayir, H. Mocan, S.A. Sanjad, J. Rodriguez-Soriano, F. Santos, C.W. Cremers, A. Di Pietro, B.I. Hoffbrand, J. Winiarski, A. Bakkaloglu, S. Ozen, R. Dusunsel, P. Goodyer, S.A. Hulton, D.K. Wu, A.B. Skvorak, C.C. Morton, M.J. Cunningham, V. Jha, and R.P. Lifton, Nature Genetics 21, 84 (1999).

    Google Scholar 

  • K.L. King, J. Essig, T.M. Roberts, and T.S. Moerland, Cell Motility and the Cytoskeleton 27, 193 (1994).

    Google Scholar 

  • S.M. King, Journal of Cell Science 113, 2521 (2000).

    Google Scholar 

  • K.J. Kinosita, R. Yasuda, H. Noji, and K. Adachi, Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 355, 473 (2000).

    Google Scholar 

  • M.P. Koonce, Journal of Biological Chemistry 272, 19714 (1997).

    Google Scholar 

  • E.D. Korn, Proceedings of the National Academy of Sciences of the United States of America 97, 12559 (2000).

    Google Scholar 

  • S.C. Kuo and J.L. McGrath, Nature 407, 1026 (2000).

    Google Scholar 

  • B.S. Lee, S.L. Gluck, and L.S. Holliday, Journal of Biological Chemistry 274, 29164 (1999a).

    Google Scholar 

  • B.S. Lee, L.S. Holliday, I. Krits, and S.L. Gluck, Journal of Bone and Mineral Research 14, 2127 (1999b).

    Google Scholar 

  • S.C. Lee, Trends in Biotechnology 16, 239 (1998a).

    Google Scholar 

  • S.C. Lee, in Biological Molecules in Nanotechnology: The Convergence of Biotechnology, Polymer Chemistry and Materials Science, edited by S.C. Lee and L. Savage (IBC Press, Southborough, MA, 1998b), p. 3.

    Google Scholar 

  • S.C. Lee, M. Ruegsegger, P.D. Barnes, B.R. Smith, and M. Ferrari, in The Nanotechnology Handbook, edited by B. Bhushan (Springer-Verlag, Heidelberg, in press-a).

  • S.C. Lee, M. Ruegsegger, and M. Ferrari, in The Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, in press-b).

  • A.A. Levesque and D.A. Compton, Journal of Cell Biology 154, 1135 (2001).

    Google Scholar 

  • Y.P. Li, W. Chen, Y. Liang, E. Li, and P. Stashenko, Nature Genetics 23, 447 (1999).

    Google Scholar 

  • T.P. Loisel, R. Boujemaa, D. Pantaloni, and M.F. Carlier, Nature 401, 613 (1999).

    Google Scholar 

  • C.R. Lowe, Current Opinion in Structural Biology 10, 428 (2000).

    Google Scholar 

  • M. Lu, L.S. Holliday, L. Zhang, W.A. Dunn, Jr., and S.L. Gluck, Journal of Biological Chemistry 276, 30407 (2001).

    Google Scholar 

  • J.J. Maciejewski, E.J. Vacchiano, S.M. McCutcheon, and H.E.J. Buhse, Journal of Eukaryotic Microbiology 46, 165 (1999).

    Google Scholar 

  • W.T. McAllister, Cellular and Molecular Biology Research 39, 385 (1993).

    Google Scholar 

  • A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, and R.M. Simmons, Science 283, 1689 (1999a).

    Google Scholar 

  • A.D. Mehta, R.S. Rock, M. Rief, J.A. Spudich, M.S. Mooseker, and R.E. Cheney, Nature 400, 590 (1999b).

    Google Scholar 

  • R.I. Menz, J.E. Walker, and A.G. Leslie, Cell 106, 331 (2001).

    Google Scholar 

  • P. Mitchell, Nature 191, 144 (1961).

    Google Scholar 

  • G. Mocz and I.R. Gibbons, Structure 9, 93 (2001).

    Google Scholar 

  • M.S. Mooseker and R.E. Cheney, Annual Review of Cell and Developmental Biology 11, 633 (1995).

    Google Scholar 

  • Y. Moriyama, S. Hiyama, and H. Asai, Biophysical Journal 74, 487 (1998).

    Google Scholar 

  • T. Nishi and M. Forgac, Nature Reviews Molecular Cell Biology 3, 94 (2002).

    Google Scholar 

  • H. Noji, R. Yasuda, M. Yoshida, and K.J. Kinosita, Nature 386, 299 (1997).

    Google Scholar 

  • E. Nudler, Journal of Molecular Biology 288, 1 (1999).

    Google Scholar 

  • O. Panke, K. Gumbiowski, W. Junge, and S. Engelbrecht, FEBS Letters 472, 34 (2000).

    Google Scholar 

  • D. Pantaloni, C. Le Clainche, and M.F. Carlier, Science 292, 1502 (2001).

    Google Scholar 

  • S.B. Peng, Y. Zhang, B.P. Crider, A.E. White, V.A. Fried, D.K. Stone, and X.S. Xie, Journal of Biological Chemistry 269, 27778 (1994).

    Google Scholar 

  • T.D. Pollard and E.M. Ostap, Cell Structure and Function 21, 351 (1996).

    Google Scholar 

  • M. Radermacher, T. Ruiz, H. Wieczorek, and G. Gruber, Journal of Structural Biology 135, 26 (2001).

    Google Scholar 

  • T.M. Roberts and M. Stewart, Journal of Cell Biology 149, 7 (2000).

    Google Scholar 

  • D. Salina, K. Bodoor, D.M. Eckley, T.A. Schroer, J.B. Rattner, and B. Burke, Cell 108, 97 (2002).

    Google Scholar 

  • Y. Sambongi, Y. Iko, M. Tanabe, H. Omote, A. Iwamoto-Kihara, I. Ueda, T. Yanagida, Y. Wada, and M. Futai, Science 286, 1722 (1999).

    Google Scholar 

  • M. Samso, M. Radermacher, J. Frank, and M.P. Koonce, Journal of Molecular Biology 276, 927 (1998).

    Google Scholar 

  • D.A. Schafer, Current Opinion in Cell Biology 14, 76 (2002).

    Google Scholar 

  • M. Setou, T. Nakagawa, D.H. Seog, and N. Hirokawa, Science 288, 1796 (2000).

    Google Scholar 

  • J.V. Shah and D.W. Cleveland, Current Opinion in Cell Biology 14, 58 (2002).

    Google Scholar 

  • P. Sheterline, J. Clayton, and J.C. Sparrow, Actin (Oxford University Press, Oxford, 1998).

    Google Scholar 

  • A.N. Smith, J. Skaug, K.A. Choate, A. Nayir, A. Bakkaloglu, S. Ozen, S.A. Hulton, S.A. Sanjad, E.A. Al-Sabban, R.P. Lifton, S.W. Scherer, and F.E. Karet, Nature Genetics 26, 71 (2000).

    Google Scholar 

  • R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, and C.D. Montemagno, Science 290, 1555 (2000).

    Google Scholar 

  • P.L. Sorgen, M.R. Bubb, and B.D. Cain, Journal of Biological Chemistry 274, 36261 (1999).

    Google Scholar 

  • R. Sousa, Trends in Biochemical Science 21, 186 (1996).

    Google Scholar 

  • J.A. Spudich, Nature Reviews Molecular Cell Biology 2, 387 (2001).

    Google Scholar 

  • J.A. Spudich, S.J. Kron, and M.P. Sheetz, Nature 315, 584 (1985).

    Google Scholar 

  • Y. Su, A. Zhou, R.S. Al-Lamki, and F. Karet, Journal of Biological Chemistry 278, 20013 (2003).

    Google Scholar 

  • H. Sugi, Journal of the Faculty of Sciences of the University of Tokyo IV 8, 603 (1960).

    Google Scholar 

  • L.G. Tilney and D.A. Portnoy, Journal of Cell Biology 109, 1597 (1989).

    Google Scholar 

  • S.H. Tynan, M.A. Gee, and R.B. Vallee, Journal of Biological Chemistry 275, 32769 (2000).

    Google Scholar 

  • S.M. Uptain, C.M. Kane, and M.J. Chamberlin, Annual Review of Biochemistry 66, 117 (1997).

    Google Scholar 

  • R.D. Vale, Journal of Cell Biology 150, F13 (2000).

    Google Scholar 

  • R.D. Vale, T. Funatsu, D.W. Pierce, L. Romberg, Y. Harada, and T. Yanagida, Nature 380 (1996).

  • R.D. Vale, B.J. Schnapp, T.S. Reese, and M.P. Sheetz, Cell 40, 559 (1985).

    Google Scholar 

  • R.D. Vale and Y.Y. Toyoshima, Cell 52, 459 (1988).

    Google Scholar 

  • K.J. Verhey and T.A. Rapoport, Trends in Biochemical Science 26, 545 (2001).

    Google Scholar 

  • M.L. Walker, S.A. Burgess, J.R. Sellers, F. Wang, J.A.R. Hammer, J. Trinick, and P.J. Knight, Nature 405, 804 (2000).

    Google Scholar 

  • A.L. Wells, A.W. Lin, L.Q. Chen, D. Safer, S.M. Cain, T. Hasson, B.O. Carragher, R.A. Milligan, and H.L. Sweeney, Nature 401, 505 (1999).

    Google Scholar 

  • S. Wilkins and M. Forgac, Journal of Biological Chemistry 276, 44064 (2001).

    Google Scholar 

  • G. Woehlke and M. Schliwa, Nature Reviews Molecular Cell Biology 1, 50 (2000).

    Google Scholar 

  • X.S. Xie, B.P. Crider, Y.M. Ma, and D.K. Stone, Journal of Biological Chemistry 269, 25809 (1994).

    Google Scholar 

  • X.S. Xie and D.K. Stone, Journal of Biological Chemistry 261, 2492 (1986).

    Google Scholar 

  • T. Yagi, Cell Structure and Function 25, 263 (2000).

    Google Scholar 

  • T. Yanagida, M. Nakase, K. Nishiyama, and F. Oosawa, Nature 307, 58 (1984).

    Google Scholar 

  • J.T. Yang, W.M. Saxton, R.J. Stewart, E.C. Raff, and L.S. Goldstein, Science 249, 42 (1990).

    Google Scholar 

  • M. Yoshida, E. Muneyuki, and T. Hisabori, Nature Reviews Molecular Cell Biology 2, 669 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B.S., Lee, S.C. & Holliday, L.S. Biochemistry of Mechanoenzymes: Biological Motors for Nanotechnology. Biomedical Microdevices 5, 269–280 (2003). https://doi.org/10.1023/A:1027324811709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027324811709

Navigation