Skip to main content
Log in

Biomass Enhancement in Maize and Soybean in Response to Glutamate Dehydrogenase Isomerization

  • Published:
Biologia Plantarum

Abstract

The relationship between nutrient composition, crop biomass, and glutamate dehydrogenase (GDH) isoenzyme pattern was investigated in soybean (Glycine max) and maize (Zea mays) by monitoring the nutrient induced isomerization of the enzyme from the seedling stage to the mature crop. GDH was extracted from the leaves of the plants, and the isoenzymes were fractionated by isoelectric focusing followed by native polyacrylamide gel electrophoresis. The isomerization Vmax values for soybean GDH, similar to maize GDH increased curvilinearly from 200 – 400 μmol mg−1 min−1 as the inorganic phosphate nutrient applied to the soil decreased from 50 − 0 mM. In soybean, combinations of N and K, P, or S nutrients induced the acidic and neutral isoenzymes, and gave biomass increases 25 – 50 % higher than the control plant. GDH isoenzymes were suppressed in soybean that received nutrients without N, K, or P and accordingly the biomass was about 30 % lower than the control. Treatment of maize with NPK nutrients increased the GDH Vmax values from 138.9 at the vegetative to 256.4 μmol mg−1 min−1 at the reproductive phase, and suppressed the basic isoenzymes, but induced both the acidic and neutral isoenzymes thereby inducing seed production (27.0 ± 1.4 g per plant); whereas both the acidic and basic isoenzymes were suppressed in the control maize, and seeds did not develop. Simultaneous induction of the acidic, neutral, and basic isoenzymes of GDH indicated the occurrence of senescence. Therefore in maize and soybean, the induction of the acidic and basic isoenzymes of GDH led to the enhancement of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ameziane, R., Bernhard, K., Lightfoot, D.: Expression of bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development.-Plant Soil 221: 47-57, 2000.

    Article  CAS  Google Scholar 

  • Barash, L., Mor, H., Sadon, T.: Evidence for ammonium-dependent de novo synthesis of glutamate dehydrogenase in detached oat leaves.-Plant Physiol. 56: 856-858, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Cammaerts, E., Jacobs, M.A.: A study of the polymorphism and the genetic control of the glutamate dehydrogenase isoenzyme in Arabidopsis thaliana.-Plant Sci. Lett. 31: 67-73, 1983.

    Google Scholar 

  • Duke, S.H., Friedrich, J.W., Schrader, L.E., Koukkari, W.L.: Oscillations in the activities of enzymes of nitrate reduction and ammonia assimilation in Glycine max and Zea mays.-Plant Physiol. 42: 269-276, 1978.

    Article  CAS  Google Scholar 

  • Elliott, G.C., Lynch, J., Läuchli, A.: Influx and efllux of phosphate in roots of intact maize plants.-Plant Physiol. 76: 336-341, 1984.

    PubMed  CAS  Google Scholar 

  • Hartmann, T.: Ammonium assimilation and nitrogen partitioning.-In: Ellenberg, H., Esser, K., Kubitzki, K., Schnepf, E., Ziegler, H. (ed.): Progress in Botany. Vol. 4. Pp. 154-164. Springer-Verlag, Berlin 1982.

    Google Scholar 

  • Hřib, J., Vooková, B., Kormut'ák, A.: Biochemical differences between normal callus and embryogenic suspensor mass of silver fir.-Biol. Plant. 39: 507-513, 1997.

    Article  Google Scholar 

  • Jail, A.J., Shargool, P.D.: Use of an aneuploid soybean cell culture to examine the relative importance of the GS:GOGAT system and GDH in ammonia assimilation.-J. Plant Physiol. 130: 137-146, 1987.

    Google Scholar 

  • Jail, A.J., Srivastava, H.S.: Effect of salicylic acid on nitrate reductase and glutamate dehydrogenase activities in maize roots.-Physiol. Plant. 53: 285-288, 1981.

    Article  Google Scholar 

  • Jungk, A., Asher, C.J., Edwards, D.G., Meyer, D.: Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybeans (Glycine max).-Plant Soil 124: 175-182, 1990.

    Article  CAS  Google Scholar 

  • King, J., Wu, W.Y.: Partial purification and kinetic properties of glutamate dehydrogenase from soybean cotyledons.-Phytochemistry 10: 915-928, 1971.

    Article  CAS  Google Scholar 

  • Lauriere, C., Wiesman, N., Daussant, J.: Glutamate dehydrogenase in the first leaf of wheat.-Physiol. Plant. 52: 146-150, 1981.

    Article  CAS  Google Scholar 

  • Lightfoot, D.A., Baron, A., Wootton, J.C.: Expression of E. coli glutamate dehydrogenase in the cyanobacterium Synechococcus PCC6301 causes ammonia tolerance.-Plant mol. Biol. 11: 191-202, 1988.

    Article  CAS  Google Scholar 

  • Loulakakis, K.A., Roubellakis-Angelakis, K.A., Kanellis, A.K.: Regulation of glutamate dehydrogenase and glutamine synthetase in avocado fruit during development and ripening.-Plant Physiol. 106: 217-222, 1994.

    PubMed  CAS  Google Scholar 

  • Loyola-Vargas, V.M., De Jimenez, E.S.: Differential role of glutamate dehydrogenase in nitrogen metabolism of maize tissue.-Plant Physiol. 76: 536-540, 1984.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent.-J. biol. Chem. 139: 256-275, 1951.

    Google Scholar 

  • Magalhaes, J.R.: Kinetics of 15NH4 + assimilation in tomato plants: Evidence for 15NH4 + assimilation via GDH in tomato roots.-J. Plant Nutr. 14: 1341-1353, 1991.

    CAS  Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants.-Academic Press, New York 1998.

    Google Scholar 

  • Melo-Oliveira, R., Oliveira, LC., Coruzzi, G.M.: Arabidopsis mutant analysis and regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.-Proc. nat. Acad. Sci. USA 93: 4718-4723, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Osuji, G.O.: Peanut glutamate dehydrogenase: A target site of herbicide action.-In: Ando, T., Fujita, K., Mae, T., Matsumoto, H., Mori, S., Sekiya, J. (ed): Plant Nutrition for Sustainable Food Production and Environment. Pp. 845-850. Kluwer Academic Press, Dordrecht 1997.

    Google Scholar 

  • Osuji, G.O., Braithwaite, C.: Signaling by glutamate dehydrogenase in response to pesticide treatment and nitrogen fertilization of peanut (Arachis hypogaea L.).-J. agr. Food Chem. 47: 3332-3344, 1999.

    Article  CAS  Google Scholar 

  • Osuji, G.O., Braithwaite, C., Pointer, R., Reyes, J.: Pesticide inactivation of peanut glutamate dehydrogenase: Biochemical basis of the enzyme's isomerization.-J. agr. Food Chem. 47: 3345-3351, 1999.

    Article  CAS  Google Scholar 

  • Osuji, G.O., Cuero, R.G.: Regulation of ammonium ion salvage and enhancement of the storage protein contents of corn, sweet potato, and yarn tuber by N-(carboxymethyl)chitosan application.-J. agr. Food Chem. 40: 724-734, 1992.

    Article  CAS  Google Scholar 

  • Osuji, G.O., Madu, W.C.: Ammonium ion-dependent isomerization of glutamate dehydrogenase in relation to glutamate synthesis in maize.-Phytochemistry 39: 495-503, 1995.

    Article  CAS  Google Scholar 

  • Osuji, G.O., Madu, W.C.: Ammonium ion salvage by glutamate dehydrogenase during defense response in maize.-Phytochemistry 42: 1491-1498, 1996.

    Article  CAS  Google Scholar 

  • Osuji, G.O., Madu, W.C.: Regulation of sweet potato growth and differentiation by glutamate dehydrogenase.-Can. J. Bot. 75: 1070-1078, 1997.

    CAS  Google Scholar 

  • Osuji, G.O., Mangaroo, A.S., Roberts, P.S.: In vitro isomerization of glutamate dehydrogenase in relation to phytosequesteration of lead.-SAAS Bull. Biochem. Biotech. 14: 60-72, 2001.

    CAS  Google Scholar 

  • Osuji, G.O., Reyes, J.C., Mangaroo, A.S.: Glutamate dehydrogenase isomerization: A simple method for diagnosing nitrogen, phosphorus, and potassium sufficiency in maize (Zea mays L.).-J. agr. Food Chem. 46: 2395-2401, 1998.

    Article  CAS  Google Scholar 

  • Pryor, A.: A maize glutamic dehydrogenase null mutant is cold temperature sensitive.-Maydica 35: 367-372, 1990.

    Google Scholar 

  • Ribaudo, C.M., Rondanini, D.P., Cura, J.A., Fraschina, A.A.: Response of Zea mays to the inoculation with Azospirillum on nitrogen metabolism under greenhouse conditions.-Biol. Plant. 44: 631-634, 2001.

    Article  Google Scholar 

  • Robinson, S.A., Stewart, G.R., Phillips, R.: Regulation of glutamate dehydrogenase in plant nitrogen metabolism.-Plant Physiol. 95: 509-516, 1992.

    Google Scholar 

  • Sakakibara, H., Fujii, K., Sugiyama, T.: Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase.-Plant Cell Physiol. 36: 789-797, 1995.

    PubMed  CAS  Google Scholar 

  • Segel, L.H.: Biochemical Calculations. 2nd Edition.-John Wiley, New York 1975.

    Google Scholar 

  • Singh, R.P., Srivastava, H.S.: Glutamate dehydrogenase activity and assimilation of inorganic nitrogen in maize seedlings.-Biochem. Physiol. Pflanz. 177: 633-642, 1982.

    CAS  Google Scholar 

  • Srivastava, H.S., Singh, R.P.: Role and regulation of L-glutamate dehydrogenase activity in higher plants.-Phytochemistry 26: 597-610, 1987.

    Article  CAS  Google Scholar 

  • Stewart, G.R., Shatilov, V.R., Turnbull, M.H., Robinson, S.A., Goodall, R.: Evidence that glutamate dehydrogenase plays a role in the oxidative deamination of glutamate in seedlings of Zea mays.-Aust. J. Plant Physiol. 22: 805-809, 1995.

    Article  CAS  Google Scholar 

  • Šukalović, V.H.: Properties of glutamate dehydrogenase from developing maize endosperm.-Physiol. Plant. 80: 238-242, 1990.

    Article  Google Scholar 

  • Šukalović, V.H., Vuletić, M.: Heterogeneity of maize root mitochondria from plants grown in the presence of ammonium.-Biol. Plant. 44: 101-104, 2001.

    Article  Google Scholar 

  • Turano, F.J., Dashner, R., Upadhyaya, A., Caldwell, C.R.: Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings.-Plant Physiol. 112: 1357-1369, 1996.

    PubMed  CAS  Google Scholar 

  • Watanabe, A, Kawakami, N., Azumi, Y.: Gene expression in senescing leaves.-In: Osborne, D.J., Jackson, M.B. (ed.): Cell Separation in Plants. Physiology, Biochemistry, and Molecular Biology. Pp. 31-38. Springer-Verlag, Berlin 1989.

    Google Scholar 

  • Watanabe, M., Hanamoto, T., Watanabe, Y.: Changes in the activities of ammonia assimilation enzymes during senescence of Brassica napus leaf protoplasts.-In: Ando, T., Fujita, K., Mae, T., Matsumoto, H., Mori, S., Sekiya, J. (ed.): Plant Nutrition for Sustainable Food Production and Environment. Pp 197-198. Kluwer Academic Press, Dordrecht 1997.

    Google Scholar 

  • Yamaya, T., Oaks, A., Matsumoto, H.: Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots.-Plant Physiol. 76: 1009-1013, 1984.

    PubMed  CAS  Google Scholar 

  • Zimmerman, M.H.: Transport in phloem.-Annu. Rev. Plant Physiol. 11: 167-190, 1960.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osuji, G., Mangaroo, A., Reyes, J. et al. Biomass Enhancement in Maize and Soybean in Response to Glutamate Dehydrogenase Isomerization. Biologia Plantarum 47, 45–52 (2003). https://doi.org/10.1023/A:1027324713682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027324713682

Navigation