Skip to main content
Log in

APRT from erythrocytes of HGPRT deficient patients: Kinetic, regulatory and thermostability properties

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adenine phosphoribosyltransferase (APRT) has been 1200-fold purified from erythrocytes of a patient with partial hipoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency, Propositus, and in those of a controlHPRT+, with 20% efficiency in both proteins and specific activity of 550 and 243 nmol/h/mgprotein. The specific activity determined in the Propositus enzyme was, in all purification steps, higher than that of the controlHPRT+. Significant changes were found in their thermal stabilities. Half inactivation times at each temperature studied are greater for the Propositus enzyme in the temperature interval 60–80°C. No significant difference has been observed in the affinity constants for adenine and PRPP substrates. Studies on inhibition by the reaction product suggest that AMP is a competitive inhibitor with respect to PRPP in both enzymes, with Ki values of 150 μM in Propositus and 220 μM in controlHPRT+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Simmonds HA, Sahota AS, Van Acker KJ: Adenine phosphoribosyl-transferase deficiency and 2,8-dihidroxyadenine lithiasis. In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle (eds). The Metabolic and Molecular Basis of Inherited Diseases. McGraw Hill, New York, 1995, pp 1707-1724

    Google Scholar 

  2. Nakamoto T, Nakatsu H, Kishi T, Sakura N, Usui T, Nihira H: Complete deficiency of adenine phosphoribosyltransferase: Report of a new family. J Urol 130: 580-582, 1983

    Google Scholar 

  3. Holden JA, Meredith GS, Kelley WN: Human adenine phosphoribosyl-transferase. Affinity purification, subunit structure, aminoacid composition and peptide mapping. J Biol Chem 245: 6951-6955, 1979

    Google Scholar 

  4. Wilson JM, O'Toole TE, Argos P, Shewach D, Daddona PE, Kelley WN: Human adenine phosphoribosyltransferase. Complete aminoacid sequence of the erythrocyte enzyme. J Biol Chem 261: 13677-13683, 1986

    Google Scholar 

  5. Kawaguchi R, Higashimoto H, Hijiki K, Hakoda M, Kamatani N: Detection of the most common mutation of adenine phosphoribosyltransferase deficiency among Japanese by a non-radioactive method. Clin Chim Acta 203: 183-190, 1991

    Google Scholar 

  6. Srivastava SK, Beutler E: Purification and kinetic study of adenine phosphoribosyltransferase from human erythrocytes. Arch Biochem Biophys 142: 426-432, 1971

    Google Scholar 

  7. Tischfield JA, Ruddle FH: Assignment of the gene for adenine phosphoribosyltransferase to human chromosome 16 by mouse-human somatic cell hybridization. Proc Natl Acad Sci USA 71: 45-49, 1974

    Google Scholar 

  8. Fye KH, Sahota A, Hancock DC, Gelb AB, Chen J, Sparks JW et al.: Adenine phosphoribosyltransferase deficiency with renal deposition of 2,8-dihidroxy adenine leading to nephrolithiasis and chronic renal failure. Arch Intern Med 153: 767-770, 1993

    Google Scholar 

  9. Wilson JM, Daddona PE, Otoadase T, Kelley WN: Adenine phosphoribosyltransferase in patients with disorders of purine and pyrimidine metabolism. J Lab Clin Med 99: 163-174, 1982

    Google Scholar 

  10. Cohen A, Doyle D, Martin DW, Ammon AJ: Abnormal purine metabolism and purine over production in a patient deficient in purine nucleoside phosphorylase. N Eng J Med 295: 1449-1454, 1976

    Google Scholar 

  11. Simmonds HA, Fairbanks LD, Morris GS, Morgan G, Watson AR, Timms P: Central nervous system disfunction in erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency. Arch Dis Child 62: 385-391, 1987

    Google Scholar 

  12. Kelley WN, Wyngaarden JB: Clinical syndromes associated with hypoxanthine-guanine phosphoribosyl transferase. In: J.B. Standbury, J.B. Wyngaarden, D.S. Frederickson, J.L. Goldstein, M.S. Brown (eds). The Metabolic Basis of Inherited Diseases. McGraw Hill, New York, 1983, pp 1115-1143

    Google Scholar 

  13. Krenitsky TA, Neil SM, Miller RL: Guanine and xanthine phosphoribosyltransferase activity of Lactobacillus casei and E. coli. Their relationship to hypoxanthine and adenine phosphoribosyltransferase activity. J Biol Chem 245: 2605-2611, 1970

    Google Scholar 

  14. Veres G, Monostori E, Rasko I: Purification and characterization of chicken brain hypoxanthine-guanine phosphoribosyltransferase. FEBS Lett 184: 299-303, 1985

    Google Scholar 

  15. Montero C, Llorente P: Artemia purine phosphoribosyltransferases: Purification and characterization. Biochem J 275: 327-334, 1991

    Google Scholar 

  16. Montero C, Llorente P: Further studies on the purine phosphoribosyltransferase ‘burst’ velocity reaction. Biochem Biophys Acta 1084: 149-154, 1991

    Google Scholar 

  17. Kelley WN, Greene ML, Rosenbloom FM, Henderson JF, Seegmiller JE: Xanthine phosphoribosyltransferase in man: Relationship to hypoxanthineguanine phosphoribosyltransferase. Ann Intern Med 70: 155-174, 1969

    Google Scholar 

  18. García Puig J, López Jimenez M, Mateos Antón F: Déficit de hipoxantinaguanina fosforribosiltransferasa. Med Clin (Barc) 85: 300-301, 1985

    Google Scholar 

  19. Rotllán P, Miras-Portugal MT: Purine nucleotide synthesis in adrenal chromaffin cells. J Neurochem 44: 1029-1036, 1985

    Google Scholar 

  20. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254, 1976

    Google Scholar 

  21. Rosenbloom FM, Henderson JF, Caldwell IC, Kelley WN, Seegmiller JE: Biochemical bases of accelerated purine biosynthesis de novo in human fibroblast lacking hypoxanthine-guanine phosphoribosyl transferase. J Biol Chem 243: 1166-1173, 1968

    Google Scholar 

  22. Willis RC, Kaufman AH, Seegmiller JE: Purine nucleotide reutilization by human lymphoblast lines with aberration of the inosinate cycle. J Biol Chem 259: 4157-4161, 1984

    Google Scholar 

  23. Becker MA, Losman MJ, Kim M: Mechanism of accelerated purine nucleotide synthesis in human fibroblasts with superactive phosphoribosylpyrophosphate-synthetase. J Biol Chem 262: 5596-5602, 1987

    Google Scholar 

  24. Becker MA, Kim M, Husain K: PRPP and purine nucleotide metabolism in human lymphoblast with both PRPP-synthetase superactivity and HGPRT deficiency. Adv Exp Med Biol 253B: 13-20, 1989

    Google Scholar 

  25. Arnold WJ, Kelley WN: Adenine Phosphoribosyltransferase. In: P.A. Hoffee, M.E. Jones (eds). Methods in Enzymology. Academic Press, New York, 1978, pp 568-574

    Google Scholar 

  26. Hori M, Henderson JF: Kinetic studies of Adenine phosphoribosyl transferase. J Biol Chem 241: 3404-3408, 1966

    Google Scholar 

  27. Alfonzo JD, Sahota A, Taylor MW: Purification and characterization of adenine phosphoribosyltransferase from S. cerevisiae. Biochem Biophys Acta 1341: 173-182, 1997

    Google Scholar 

  28. Yip LC, Dancis J, Balis ME: Immunochemical studies of AMP: Pyrophosphate phosphorybosyl transferase from normal and Lesch-Nyham subjects. Biochim Biophys Acta 293: 359-369, 1973

    Google Scholar 

  29. Montero C, Llorente P, Argomaniz L, Menendez M: Thermal inactivation of Artemia HGPRT. Effect of substrates on inactivation kinetics. Int J Biol Macromol 18: 252-262, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespillo, J., Llorente, P. & Argom´niz, L. APRT from erythrocytes of HGPRT deficient patients: Kinetic, regulatory and thermostability properties. Mol Cell Biochem 254, 359–363 (2003). https://doi.org/10.1023/A:1027323521969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027323521969

Navigation