Advertisement

Biomedical Microdevices

, Volume 5, Issue 4, pp 333–341 | Cite as

Poly(ethylene glycol)-containing Hydrogels for Oral Protein Delivery Applications

  • Bumsang Kim
  • Nicholas A. Peppas
Article

Abstract

Novel pH-sensitive hydrogels were developed as suitable candidates for carriers in bioMEMS devices as well as for oral delivery of therapeutic peptides and proteins due to their ability to respond to environmental pH change. Macromonomers containing various PEG molecular weights were synthesized and used to prepare P(MAA-g-EG) hydrogels were by photopolymerization. P(MAA-g-EG) hydrogels showed a drastic change of the equilibrium swelling ratio between pH 2.2 and 7.0. At pH 7.0, hydrogels with PEGMA2000 exhibited higher swelling ratio than hydrogels with PEGMA1000. For both hydrogels with PEGMA1000 and PEGMA2000, the swelling mechanism became more relaxation-controled as the environmental pH changed from 2.2 to 7.0 due to the ionization of the functional groups in polymer networks at high pH. In vitro release studies of insulin were conducted. P(MAA-g-EG) hydrogels exhibited drastic increase of insulin release as the pH of the medium was changed from acidic to basic. Insulin release from P(MAA-g-EG) hydrogels with PEGMA2000 was slower than from hydrogels with PEGMA1000 at both low and high pH. These results were used to design and improve protein release behavior from these carriers.

poly(ethylene glycol) macromonomers pH-sensitive hydrogel insulin release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.-Å. Albertsson, A. Cajarville, D.E. Brooks, and F. Tjerneld, Biochim. Biophys. Acta 926, 87-93 (1987).Google Scholar
  2. J.F. Arrieta-Molero, K. Aleck, M.K. Shina, C.M. Brownschneidle, L.J. Shapiro, and M.A. Sperling, Horm. Res. 16, 249-256 (1982).Google Scholar
  3. C.L. Bell and N.A. Peppas, Biomaterials 17, 1203-1218 (1996).Google Scholar
  4. A. Bernkop-Schnürch, J. Control. Release 52, 1-16 (1998).Google Scholar
  5. P. Couvreur and F. Puisieux, Adv. Drug Deliver. Rev. 10, 141-162 (1993).Google Scholar
  6. N.V. Efremova, Y. Huang, N.A. Peppas, and D.E. Leckband, Langmuir 18, 836-845 (2002).Google Scholar
  7. D.J. Enscore, H.B. Hopfenberg, and V.T. Stannett, Polymer 18, 793-800 (1977).Google Scholar
  8. Y. Gnanou and P. Rempp, Makromol. Chem 188, 2111-2119 (1987).Google Scholar
  9. J.M. Harris, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications (Plenum Press, New York, 1992).Google Scholar
  10. Y. Huang, W. Leobandung, A. Foss, and N.A. Peppas, J. Control. Release 65, 63-71 (2000).Google Scholar
  11. B. Kim, K. La Flamme, and N.A. Peppas, J. Appl. Polym. Sci. 89, 1606-1613 (2003).Google Scholar
  12. V.H.L. Lee and A. Yamamoto, Adv. Drug Deliver. Rev. 4, 171-207 (1990).Google Scholar
  13. A.M. Lowman, M. Morishita, M. Kajita, T. Nagai, and N.A. Peppas, J. Pharm. Sci. 88, 933-937 (1999).Google Scholar
  14. A.M. Lowman and N.A. Peppas, Polymer 41, 73-80 (2000).Google Scholar
  15. F. Madsen and N.A. Peppas, Biomaterials 20, 1701-1708 (1999).Google Scholar
  16. K. Moriyama, T. Ooya, and N. Yui, J. Control. Release 59, 77-86 (1999).Google Scholar
  17. K. Moriyama and N. Yui, J. Control. Release 42, 237-248 (1996).Google Scholar
  18. H.M. Patel, R.W. Stevenson, J.A. Parsons, and B.E. Ryman, Biochim. Biophys. Acta 716, 188-193 (1982).Google Scholar
  19. N.A. Peppas and J.J. Sahlin, J. Biomat. Sci., Polym. Ed. 8, 421-436 (1997).Google Scholar
  20. P.L. Ritger and N.A. Peppas, J. Control. Release 5, 37-42 (1987).Google Scholar
  21. D.N. Robinson and N.A. Peppas, Macromolecules 35, 3668-3674 (2002).Google Scholar
  22. A. Rubinstein, B. Tirosh, M. Baluom, T. Nassar, A. David, R. Radai, I. Gliko-Kabir, and M. Friedman, J. Control. Release 46, 59-73 (1997).Google Scholar
  23. M. Shichiri, Y. Shimizu, Y. Yoshida, R. Kawamori, M. Fukychi, Y. Shigeta, and H. Abe, Diabeologia 10, 317-321 (1974).Google Scholar
  24. M. Torres-Lugo, M. García, R. Record, and N.A. Peppas, J. Control. Release 80, 197-205 (2002).Google Scholar
  25. M. Torres-Lugo and N.A. Peppas, Macromolecules 32, 6646-6651 (1999).Google Scholar
  26. M. Torres-Lugo and N.A. Peppas, Biomaterials 21, 1191-1196 (2000).Google Scholar
  27. J.F. Woodley, Crit. Rev. Ther. Drug 11, 61-95 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Bumsang Kim
    • 1
  • Nicholas A. Peppas
    • 2
  1. 1.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Biomaterials, Drug Delivery and Molecular Recognition Laboratories, Departments of Chemical Engineering, Biomedical Engineering, and PharmaceuticsUniversity of TexasAustinUSA

Personalised recommendations