Skip to main content
Log in

An in vivo Biocompatibility Assessment of MEMS Materials for Spinal Fusion Monitoring

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The site-specific biocompatibility of silicon chips and commercially available silicon pressure sensor die were evaluated after implantation in caprine (goat) spine. Surgical procedures were developed to insert silicon chips into the nucleus pulposus regions of the lumbar discs and pressure sensors into autologous bone grafts for cervical spine fusion. After a six-month implantation period, the animal was sacrificed and the spinal segments were meticulously harvested and analyzed for local tissue response via gross examination and histological techniques. Gross examination of cervical and lumbar spinal segments after harvest and dissection did not reveal any visible signs of adverse reactions to the MEMS materials. Furthermore, the surrounding tissues and musculature for both spinal regions were devoid of necrosis. Histological analysis of compromised spinal segments did not reveal evidence of any adverse foreign body response by the caprine spinal tissue to the implanted MEMS materials. These preliminary results support the further development of a spinal fusion monitoring system based on implantable MEMS sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Benzel and L. Ferrara, J. Neurosurgery 94, 180 (2001).

    Google Scholar 

  • E. Benzel, L. Ferrara, S. Roy, and A. Fleischman, Clinical Neurosurgery 49, 209-225 (2002).

    Google Scholar 

  • E. Benzel, J. Lastra, I. Kalfas, K. Bak, and L. Ferrara, Clinical Neurosurgery 47, 557-588 (2000).

    Google Scholar 

  • S. Blumenthal and K. Gill, Spine 18, 1186-1189 (1993).

    Google Scholar 

  • A. Brodsky, E. Kovalsky, and M. Khalil, Spine S261-S265 (1991).

  • M. Kanayama, B. Cunningham, and J. Weis, J. Bone Joint Surg (Am) 1710-1720 (1997).

  • G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J. Moran, and J. Melzak, Biomaterials 2737-2750 (2001).

  • E. Ledet, B. Sachs, J. Brunski, C. Gatto, and P. Donzelli, Spine 25, 2595-2600 (2000).

    Google Scholar 

  • T. Oktenoglu, A. Ozer, L. Ferrara, N. Andalkar, A. Sarioglu, and E. Benzel, Spine 94, 108-114 (2001).

    Google Scholar 

  • A. Rohlmann, J. Calisse, and G. Bergmann, Spine 24, 1192-1196 (1999).

    Google Scholar 

  • A. Rohlmann, G. Bergmann, and F. Graichen, J. Biomechanics 30, 41-47 (1997a).

    Google Scholar 

  • A. Rohlmann, G. Bergmann, F. Graichen, and U. Weber, Med Eng Phys 19, 539-546 (1997b).

    Google Scholar 

  • A. Rohlmann, G. Bergmann, F. Graichen, and U. Weber, Journal of Bone and Joint Surgery 82-B, 445-449 (2000a).

    Google Scholar 

  • A. Rohlmann, G. Bergmann, H.M. Mayer, and F. Graichen, Spine 20, 2683-2689 (1995).

    Google Scholar 

  • A. Rohlmann, F. Graichen, and G. Bergmann, Journal of Biomechanics 33, 1099-1104 (2000b).

    Google Scholar 

  • A. Rohlmann, F. Graichen, and G. Bergmann, Physical Therapy 82, 44-51 (2002).

    Google Scholar 

  • A. Rohlmann, F. Graichen, U. Weber, and G. Bergmann, Spine 25, 2981-2986 (2000c).

    Google Scholar 

  • A. Rohlmann, L.H. Riley, III, G. Bergmann, and F. Graichen, Med Eng Phys 18, 485-488 (1996).

    Google Scholar 

  • A. Rohlmann, A. Ulrike, F. Graichen, and G. Bergmann, Journal of Biomechanics 34, 989-993 (2001).

    Google Scholar 

  • S. Roy, L. Ferrara, A. Fleischman, and E. Benzel, Neurosurgery 49, 779-798 (2001).

    Google Scholar 

  • J.H. Shah, W.G.J. Hampson, and M.I.V. Jayson, The Journal of Bone and Joint Surgery 60-B, 246-251 (1978).

    Google Scholar 

  • T. Smit, Eur Spine J. 11, 137-144 (2002).

    Google Scholar 

  • J. Szivek and F. Magee, Journal of Investigative Surgery 2, 195-206 (1989).

    Google Scholar 

  • J. Szivek, R. Roberto, J. Slack, and B. Majeed, Spine 27, 487-497 (2002).

    Google Scholar 

  • E. Turkof, H. Bellolo, and J. Monsivais, Can J Vet Res. 58, 156 (1994).

    Google Scholar 

  • P.v.D.M. Wuisman and T. Smit, J Neurosurg (Spine) 4, 433-439 (2002).

    Google Scholar 

  • T. Zdeblick, A. Ghanayem, A. Rapoff, C. Swain, T. Bassett, M. Cooke, and M. Markel, Spine 23, 758-766 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrara, L., Fleischman, A., Togawa, D. et al. An in vivo Biocompatibility Assessment of MEMS Materials for Spinal Fusion Monitoring. Biomedical Microdevices 5, 297–302 (2003). https://doi.org/10.1023/A:1027305729456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027305729456

Navigation