Neurochemical Research

, Volume 22, Issue 4, pp 419–425 | Cite as

Overview—Flavonoids: A New Family of Benzodiazepine Receptor Ligands

  • Jorge H. Medina
  • Haydee Viola
  • Claudia Wolfman
  • Mariel Marder
  • Cristina Wasowski
  • Daniel Calvo
  • Alejandro C. Paladini
Article

Abstract

Benzodiazepines (BDZs) are the most widely prescribed class of psychoactive drugs in current therapeutic use, despite the important unwanted side-effects that they produce such as sedation, myorelaxation, ataxia, amnesia, ethanol and barbiturate potentiation and tolerance. Searching for safer BDZ-receptor (BDZ-R) ligands we have recently demonstrated the existence of a new family of ligands which have a flavonoid structure. First isolated from plants used as tranquilizers in folkloric medicine, some natural flavonoids have shown to possess a selective and relatively mild affinity for BDZ-Rs and a pharmacological profile compatible with a partial agonistic action. In a logical extension of this discovery various synthetic derivatives of those compounds, such as 6,3′-dinitroflavone were found to have a very potent anxiolytic effect not associated with myorelaxant, amnestic or sedative actions. This dinitro compound, in particular, exhibits a high affinity for the BDZ-Rs (Ki = 12–30 nM). Due to their selective pharmacological profile and low intrinsic efficacy at the BDZ-Rs, flavonoid derivatives, such as those described, could represent an improved therapeutic tool in the treatment of anxiety. In addition, several flavone derivatives may provide important leads for the development of potent and selective BDZ-Rs ligands.

Flavonoids benzodiazepine receptors anxiolysis partial agonist 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Mohler, H., and Okada, T. 1977. Benzodiazepine receptors: demonstration in the central nervous system. Science 198:849–851.Google Scholar
  2. 2.
    Squires, R. F., and Braestrup, C. 1977. Benzodiazepine receptors in rat brain. Nature 266:732–734.Google Scholar
  3. 3.
    Mc Kernan, R. M., and Whiting, P. J. 1996. Which GABAA receptors subtypes really occur in the brain? TINS 19:139–143.Google Scholar
  4. 4.
    Olsen, R. W., and Venter, J. C. 1986. Benzodiazepine/GABA receptors and chloride channels. Structural and Functional Properties. Alan R. Liss, New York.Google Scholar
  5. 5.
    Mohler, H., Knoflach, F., Paysan, K., Motejlek, K., Benke, D., Luscher, B., and Fritschy, J. M. 1995. Heterogeneity of GABAA receptors: cell-specific expression, pharmacology, and regulation. Neurochem. Res. 20:631–638.Google Scholar
  6. 6.
    Phillis, J. W., and O'Regan, M. H. 1988. The role of adenosine in the central actions of the benzodiazepines. Prog. Neuropsychopharmacol. & Biol. Psychiat. 12:389–404.Google Scholar
  7. 7.
    Costa, E., and Guidotti, A. 1996. Benzodiazepines on trial: a research strategy for their rehabilitation. TIPS: 17:192–200.Google Scholar
  8. 8.
    Siegharth, W., and Karobath, M. 1980. Molecular heterogeneity of benzodiazepine receptors. Nature 285:826–828.Google Scholar
  9. 9.
    Trifiletti, R. R., Lo, M. M. S., and Snyder, S. H. 1984. Kinetics differences between type I and type II benzodiazepine receptors. Mol. Pharmacol. 26:228–234.Google Scholar
  10. 10.
    Niddam, R. A., Dubois, A., Scatton, B., Arbilla, S., and Langer, S. Z. 1987. Autoradiographic localization of [3H] zolpidem binding sites in the rat CNS: comparison with the distribution of [3H] flunitrazepam binding sites. J. Neurochem. 49:890–896.Google Scholar
  11. 11.
    Woods, J. H., Katz, J. L., and Winger, G. 1992. Benzodiazepines: use, abuse and consequences. Pharmacol. Rev. 44:151–347.Google Scholar
  12. 12.
    Pratt, J. A. 1991. Psychotropic drug tolerance and dependence: common underlying mechanism? Pages 2–28, in The Biological bases of drug tolerance and dependence, Academic Press.Google Scholar
  13. 13.
    Kales, A., Bixler, E., Vela-Bueno, A., Soldatos, C. R., and Manfredi, R. L. 1987. Alprazolam: effects on sleep and withdrawal phenomena. J. Clin. Pharmacol. 27:508–515.Google Scholar
  14. 14.
    Miller, L. G., Woolverton, S., Greenblatt, D. J., Lopez, F., Beth Roy R., and Shader, R. 1989. Chronic benzodiazepine administration IV. Biochem Pharmacol. 38:3773–3777.Google Scholar
  15. 15.
    Gallagher, D., and Primus, R. J. 1992. Benzodiazepine tolerance and dependence: GABAA receptor complex locus of change. Biochem. Soc. Symp. 59:135–151.Google Scholar
  16. 16.
    Nutt, D. J. 1986. Benzodiazepine dependence in the clinic: reason for anxiety. TIPS 7:457–460.Google Scholar
  17. 17.
    Griffiths, R. R., and Sannerud, C. A. 1987. Abuse liability of tranquilizers. In Rational use of psychotropic drugs with special emphasis on tranquilizers in non-psychiatric setting. M. E. Vartanian et al. (eds.) pages 23–29, Excerpta Med., Amsterdam.Google Scholar
  18. 18.
    Rickels, K., Schweizer, E., Case, W. G., and Greenblatt, D. J. 1990. Long-term therapeutic use of benzodiazepines. I. Effect of abrupt discontinuation. Arch. Gen. Psychiat. 47:899–907.Google Scholar
  19. 19.
    Thiebot, M. H. 1985. Some evidence for amnesic-like effects of benzodiazepines in animals. Neurosci. Biobehav. Rev. 9:95–100.Google Scholar
  20. 20.
    Izquierdo, I., Pereira, M. E., and Medina, J. H. 1990. Benzodiazepine receptor ligand influences on acquisition: suggestion of an endogenous modulatory mechanism mediated by benzodiazepine receptors. Behav. Neural Biol. 54:27–41.Google Scholar
  21. 21.
    Lister, R. 1985. The amnestic action of benzodiazepines in man. Neurosci. Biobehav. Rev. 9:87–93.Google Scholar
  22. 22.
    Izquierdo, I., and Medina, J. H. 1991. GABAA modulation of memory: the role of endogenous benzodiazepines. TIPS 12:260–265.Google Scholar
  23. 23.
    Haefely, W. E., Martin, J. R., and Schoch, P. 1990. Novel anxiolytics that act as partial agonists at benzodiazepine receptors. TIPS 11:452–456.Google Scholar
  24. 24.
    Moreau, J. L., Jenck, F., Pieri, L., Schoch, P., Martin, J. R., and Haefely, W. E. 1990. Physical dependence induced in DBA/2j mice by benzodiazepine receptor full agonists, but not by partial agonist Ro 16–6028. Eur. J. Pharmacol. 190:269–273.Google Scholar
  25. 25.
    Haig, J. R., and Feely, M. Ro, 1988. 16–6028, a benzodiazepine receptor partial agonist, does not exhibit anticonvulsant tolerance in mice. Eur. J. Pharmacol. 147:282–285.Google Scholar
  26. 26.
    Morton, S., and Lader, M. 1990. Studies with alpidem in normal volunteers and anxious patients. Pharmacopsychiatry. 23:120–123.Google Scholar
  27. 27.
    Perrault, G., Morel, E., Sanger, D. J., and Zivkovic, B. 1993. Repeated treatment with alpidem, a new anxiolytic, does not induce tolerance or physical dependence. Neuropharmacol. 32:855–863.Google Scholar
  28. 28.
    Schoch, P., Moreau, J. I., Martin, J. R., and Haefely, W. E. 1992. Aspect of benzodiazepine receptor structure and function with relevance to drug tolerance and dependence. Biochem. Soc. Symp. 59:121–134.Google Scholar
  29. 29.
    Harborne, J. B. (ed.) 1994. The Flavonoids, Advances in research since 1986. Chapman and Hall, London.Google Scholar
  30. 30.
    Middleton, E., and Kandaswami, C. 1994. The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer, Pages 619–645, in Harbone J. B. (ed.) The Flavonoids, Chapman and Hall, London.Google Scholar
  31. 31.
    Miksicek, R. J. 1993. Commonly occurring plant flavonoids have estrogenic activity. Mol. Pharmacol. 44:37–43.Google Scholar
  32. 32.
    Barnard, I., Smee, F., Huffman, J. H., Meyerson, L. H. Sidwell, R. W. 1993. Antiherpes virus activity of 59–303, a novel plant flavonoid. Chemother. 39:203–211.Google Scholar
  33. 33.
    Picq, M., Cheav, S. V., and Prigent, A. F. 1991. Effect of two flavonoid compounds on the central nervous system. Analgesic activity. Life Sci. 49:1979–1988.Google Scholar
  34. 34.
    Kleinjnen, J., and Knipschild, P. 1992. Ginkgo biloba. Lancet 340:1136–1139.Google Scholar
  35. 35.
    Oyama, Y., Fuchs, P. A., Katayama, N., and Noa, K. 1994. Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res. 635:125–129.Google Scholar
  36. 36.
    Ruckstuhl, L., Beretz, A., Anton, R., and Laudry, Y. 1979. Flavonoids are selective cyclic GMP phosphoiesterase inhibitors. Biochem. Pharmacol. 28:535–538.Google Scholar
  37. 37.
    Cushman, M., Nagarathnam, D., Burg, D. L., and Gearhlen, R. L. 1991. Synthesis and protein-tyrosine kinase inhibitory activities of flavonoids analogues. J. Med. Chem. 34:798–806.Google Scholar
  38. 38.
    Ferriola, P. C., Coy, V., and Middleton, E. 1989. Protein kinase C inhibition by flavonoids. Kinetics mechanisms and structure-activity relationships. Biochem. Pharmacol. 38:245–254.Google Scholar
  39. 39.
    Koch, H. P., Jager, W., Groh, U., an Plank, G. 1992. In vitro inhibition of adenosine deaminase by flavonoids and related compounds. Meth. Fin. Exp. Clin. Pharmacol. 14:413–417.Google Scholar
  40. 40.
    Ji, X., Melman, N., and Jacobson, K. A. 1996. Interactions of flavonoids and other phytochemicals with adenosine receptors. J. Med. Chem. 39:781–788.Google Scholar
  41. 41.
    Nielsen, M., Frokjaer, S., and Braestrup, C. 1988. High affinity of naturally-occurring biflavonoid, amentoflavone, to brain benzodiazepine receptors in vitro. Biochem. Pharmacol. 37:3285–3287.Google Scholar
  42. 42.
    Medina, J. H., Peña, C., Levi M., Wolfman, C., and Paladini A. C. 1989. Benzodiazepine-like molecules as well as other ligands for the brain benzodiazepine receptor are relatively common constituents of plantas. Biochem. Biophys. Res. Comm. 165:547–553.Google Scholar
  43. 43.
    Luck, K. C., Stern, L., Weigele, M., O'Brien, R. A., and Spirst, N. 1983. Isolation and identification of “diazepam-like” compounds from bovine urine. J. Nat. Prod. 46:852–861.Google Scholar
  44. 44.
    Medina, J. H., Danelon, J. L., Wasowski, C., Levi de Stein, M., and Paladini, A. C. 1991. Production of benzodiazepine-like molecules in bovine rumen. Biochem. Biophys. Res. Comm. 181:1048–1055.Google Scholar
  45. 45.
    Medina, J. H., Paladini A. C., Wolfman, C. Levi, M., Calvo, D., Diaz, L., and Peña, C. 1990 Chrysin (5,7 di-OH flavone) a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol. 40:2227–2232.Google Scholar
  46. 46.
    Wolfman, C. Viola, H. Paladini, A. C. Dajas, F., and Medina, J. H. 1994. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol. Biochem. Behav 47:1–4.Google Scholar
  47. 47.
    Viola, H., Wasowski, C., Levi, M., Wolfman, C. Silveira, R., Dajas, F. Medina, J. H., and Paladini, A. C. 1995. Apigenin, a component of Matricaria recutita flowers is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med. 61:213–216.Google Scholar
  48. 48.
    Wei, H., Tye, L., Bresnick, E., and Birt D. F. 1990. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 50:499–502.Google Scholar
  49. 49.
    Okuyama, E., Okamoto, Y., Yamazaki, M., and Satake, M. 1996. Pharmacologically active components of a peruvian medicinal plant, Huanarpo (Jatropha cilliata, M. Arg.) Chem. Pharm. Bull. (Japan). 44:333–336.Google Scholar
  50. 50.
    Viola, H., Wolfman, C., Levi, M., Wasowski, C., Peña, C., Medina, J. H., and Paladini, A. C. 1994. Isolation of pharmacologically active benzodiazepine receptor ligands from Tilia tomentosa (Tiliaceae). J. Ethnophamacol. 44:47–53.Google Scholar
  51. 51.
    Marder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P. G., Medina, J. H., and Paladini, A. C. 1996. Cirsiliol and caffeic acid ethyl ester isolated from Salvia guaranitica, are competitive ligands for the central benzodiazepine receptors. Phytomedicine 3:29–31.Google Scholar
  52. 52.
    Haberlein, H., Tschiersch, K. P., and Schafer, H. L. 1994. Flavonoids from Leptospermum scoparium with affinity to the benzodiazepine receptor characterized by structure activity relationships and in vivo studies of a plant extract. Pharmazie 49:912–921.Google Scholar
  53. 53.
    Shen, X.-L., Nielsen, M., Witt, M. R., Sterner, O., Bergendorff, O., and Khayyal, M. 1994. Inhibition of [methyl-3H] diazepam binding to rat brain membranes in vitro by dinatin and skrofulein. Acta Pharmacol. Sinica 15:385–388.Google Scholar
  54. 54.
    Marder, M., Viola, H., Wasowski, C., Wolfman, C. Waterman, P., Medina, J. H., and Paladini, A. C. 1995. 6,3'-dinitroflavone, a novel high affinity ligand for the benzodiazepine receptor with potent anxiolytic properties. Bioorg. & Med. Chem. Lett. 5:2717–2720.Google Scholar
  55. 55.
    Sternbach, L. H. 1978. The benzodiazepine story. Prog. Drug Res. 22:229–266.Google Scholar
  56. 56.
    Marder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P., Cassels, B. K., Medina, J. H., and Paladini, A. C. 1996. 6 Bromoflavone, a high affinity ligand for the benzodiazepine receptors is a member of a family of active flavonoids. Biochem. Biophys. Res. Comm., in press.Google Scholar
  57. 57.
    Lopez, F., Miller, L. G., Greenblatt, D. J., Kaplan, G. B., and Shader, R. I. 1989. Interaction of caffeine with the GABAA receptor complex: alterations in receptor function but not ligand binding. Eur. J. Pharmacol. 172:453–459.Google Scholar
  58. 58.
    Cammarota, M. C., Wolfman, C., Jerusalinsky, D., Bernabeu, R., Levi, M., Izquierdo, I., and Medina, J. H. 1995. Inhibitory avoidance training-induced selective changes in 3H-AMPA receptor binding in the hippocamal formation. Neurobiol. Learn. and Mem. 64:257–264.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Jorge H. Medina
    • 1
  • Haydee Viola
    • 1
  • Claudia Wolfman
    • 1
  • Mariel Marder
    • 2
  • Cristina Wasowski
    • 2
  • Daniel Calvo
    • 1
  • Alejandro C. Paladini
    • 2
  1. 1.Instituto de Biologia Celular y Neurociencias, Facultad de MedicinaUBABuenos AiresArgentina
  2. 2.Instituto de Quimica y Fisicoquimica Biologicas, Facultad de Farmacia y BioquimicaUBABuenos AiresArgentina

Personalised recommendations