Skip to main content
Log in

Dark Energy and Global Rotation of the Universe

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We discuss the problem of universe acceleration driven by global rotation. The redshift-magnitude relation is calculated and discussed in the context of SN Ia observation data. It is shown that the dynamics of considered problem is equivalent to the Friedmann model with additional non-interacting fluid with negative pressure. We demonstrate that the universe acceleration increase is due to the presence of global rotation effects, although the cosmological constant is still required to explain the SN Ia data. We discuss some observational constraints coming from SN Ia imposed on the behaviour of the homogeneous Newtonian universe in which matter rotates relative local gyroscopes. In the Newtonian theory Ωr,0 can be identified with Ωω,0 (only dust fluid is admissible) and rotation can exist with Ωr,0 =Ωω,0 ≤ 0. However, the best-fit flat model is the model without rotation, i.e., Ωω,0 =0. In the considered case we obtain the limit for Ωω,0>-0.033 on the confidence level 68.3. We are also beyond the model and postulate the existence of additional matter which scales like radiation matter and then analyse how that model fits the SN Ia data. In this case the limits on rotation coming from BBN and CMB anisotropies are also obtained. If we assume that the current estimates are Ωm,0 ~ 0.3, Ωr,0 ~ 10-4, then the SN Ia data show that Ωω,0 ≥ -0.01 (or ω0 > 2.6 · 10-19 rad/s). The statistical analysis gives us that the interval for any matter scaling like radiation is Ωr,0 ∈ ( - 0.01, 0.04).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szekeres, P. and Rankin, R. (1977). Aust. Math. Soc. B 20, 114.

    Google Scholar 

  2. Senovilla, J. M. M., Sopuerta, C. F., and Szekeres, P. (1998). Gen. Rel. Grav. 30, 389.

    Google Scholar 

  3. Godlowski, W., Szydlowski, M., Flin, P., and Biernacka, M. (2003). Gen. Rel. Grav. 35, 907.

    Google Scholar 

  4. King, A. R. and Ellis, G. F. R. (1973). Commun. Math. Phys. 31, 209.

    Google Scholar 

  5. Raychaudhuri, A. K. (1979). Theoretical Cosmology, Clarendon Press, Oxford.

    Google Scholar 

  6. Hawking, S. W. (1969). Mon. Not. R. Astron. Soc. 142, 129.

    Google Scholar 

  7. Ellis, G. F. R. (1973). In Cargèse Lectures in Physics, Vol. 6, E. Schatzman (Ed.), Gordon and Breach, New York.

    Google Scholar 

  8. Li, L.-X. (1998). Gen. Rel. Grav. 30, 497.

    Google Scholar 

  9. Collins, C. B. and Hawking, S. W. (1973). Mon. Not. R. Astron. Soc. 162, 307.

    Google Scholar 

  10. Hawking, S. W. (1974). In Confrontation of Cosmological Theories with Observational Data, M. S. Longair (Ed.), Reidel, Dordrecht, p. 283.

    Google Scholar 

  11. Kristian, J. and Sachs, R. K. (1966). Astrophys. J. 143, 379.

    Google Scholar 

  12. Ciufolini, I. and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  13. Heckmann, O. and Schücking, E. (1959). In Handbuch der Physik, Vol. LIII, S. Flügge (Ed.), Springer-Verlag, Berlin, p. 489.

    Google Scholar 

  14. Perlmutter, S., et al. (1999). Astrophys. J. 517, 565.

    Google Scholar 

  15. Riess, A. G., et al. (1998). Astron. J. 116, 1009.

    Google Scholar 

  16. Weinberg, S. (1972). Gravitation and Cosmology, Wiley, New York.

    Google Scholar 

  17. Efstathiou, G., Bridle, S. L., Lasenby, A. N., Hobson, M. P., and Ellis, R. S. (1999). Mon. Not. Roy. Astron. Soc. 303, L47.

    Google Scholar 

  18. Vishwakarma, R. G. (2001). Gen. Rel. Grav. 33, 1973.

    Google Scholar 

  19. Peebles, P. J. E. and Ratra, B. (2002). (astro-ph/0207347).

  20. Lahav, O. (2002). (astro-ph/0208297).

  21. Vishwakarma, R. G. and Singh, P. (2002). (astro-ph/0211285).

  22. Ichiki, K., Yahiro, M., Kajino, T., Orito, M., and Mathews, G. J. (2002). (astro-ph/0203272).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godłowski, W., Szydłowski, M. Dark Energy and Global Rotation of the Universe. General Relativity and Gravitation 35, 2171–2187 (2003). https://doi.org/10.1023/A:1027301723533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027301723533

Navigation