Evolution of Ti–Sn-rutile-supported V2O5–WO3 catalyst during its use in nitric oxide reduction by ammonia


This paper concerns the relation between surface structure of crystalline vanadia-like active species on vanadia–tungsta catalyst and their activity in the selective reduction of NO by ammonia to nitrogen. The investigations were performed for Ti–Sn-rutile-supported isopropoxy-derived catalyst. The SCR activity and surface species structure were determined for the freshly prepared catalyst, for the catalyst previously used in NO reduction by ammonia (320 ppm NO, 335 ppm NH3 and 2.35 vol% O2) at 573 K as well as for the catalyst previously annealed at 573 K in helium stream containing 2.35 vol% O2. The crystalline islands, exposing main V2O5 surface, with some tungsten atoms substituted for V-ones, were found, with XPS and FT Raman spectroscopy, to be present at the surface of the freshly prepared catalyst. A profound evolution of the active species during the catalyst use at 573 K was observed. Dissociative water adsorption on V5+OW6+ sites is discussed as mainly responsible for the catalyst activity at 473 K and that on both V5+OW6+ and V4+OW6+ sites as determining the activity at 523 K.

This is a preview of subscription content, access via your institution.


  1. [1]

    H. Bosch and F. Janssen, Catal. Today 2 (1988) 369.

    Article  CAS  Google Scholar 

  2. [2]

    P. Forzatti and L. Lietti, Heter. Chem. Rev. 3 (1996) 33.

    Article  CAS  Google Scholar 

  3. [3]

    G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal. B 18 (1998) 1.

    Article  CAS  Google Scholar 

  4. [4]

    J.P. Chen and R.T. Yang, J. Catal. 125 (1990) 411.

    Article  CAS  Google Scholar 

  5. [5]

    P. Courtine, in: Solid State Chemistry in Catalysis, ACS Symp., Series 279, Vol. 37, eds. R.K. Grasselli and J.F. Brazdil (Am. Chem. Soc., Washington, DC, 1985).

    Google Scholar 

  6. [6]

    H.G. Bachman and W.H. Burnes, Z. Kristallogr. 115 (1961) 215.

    Article  Google Scholar 

  7. [7]

    K. Tarama, M. Teranishi and S. Yoshida, Bull. Inst. Chem. Res., Kyoto Univ. 46 (1968) 185.

    CAS  Google Scholar 

  8. [8]

    M. Coldea, L. Stanescu and I. Ardelean, Phys. Stat. Sol. A 26 (1974) 145.

    Google Scholar 

  9. [9]

    E. Brocławik, A. Góra and M. Najbar, J. Mol. Catal., submitted.

  10. [10]

    M. Najbar, E. Brocławik, A. Góra, A. Białas and A. Wesełucha-Birczyńska, Phys. Chem. Lett., submitted.

  11. [11]

    L. Lietti, I. Nova, E. Tronconi and P. Forzatti, AIChE J. 43 (1997) 2559.

    Article  CAS  Google Scholar 

  12. [12]

    M. Najbar, A. Białas, J. Camra and B. Borz{ie138-01}cka-Prokop, in: Proc. 1st World Congr. Env. Catal., Pisa, 1995, p. 283.

  13. [13]

    M. Najbar and J. Camra, Solid State Ionics 101–103 (1997) 707.

    Article  Google Scholar 

  14. [14]

    M. Najbar, A. Białas, F. Mizukami, A. Wesełucha-Birczyńska, E. Bielańska and A. Góra, Pol. J. Env. Stud. 6 (1997) 83.

    Google Scholar 

  15. [15]

    M. Najbar, J. Camra, A. Białas, A. Wesełucha-Birczyńska, B. Borz{ie138-02}cka-Prokop, L. Delevoye and J. Klinowski, Phys. Chem. Chem. Phys. 1 (1999) 4645.

    Article  CAS  Google Scholar 

  16. [16]

    M. Gąsior and B. Grzybowska, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 27 (1979) 835.

    Google Scholar 

  17. [17]

    L. Depero, P. Bonzi and M. Zocchi, C. Casale and G. De Michele, J. Matter. Res. 8 (1993) 2713.

    Google Scholar 

  18. [18]

    R. Mariscal, M. Galan-Fereres, J. Anderson L. Alemany, J. Palacios and J. Fierro, in: Proc. 1st World Congr. Env. Catal., Piza, 1995, p. 223.

  19. [19]

    C. Cristiani, M. Bellotto, P. Forzatti and F. Bregani, J. Mater. Res. 8 (1993) 2019.

    CAS  Google Scholar 

  20. [20]

    L.E. Depero, J. Solid State Chem. 104 (1993) 470.

    Article  CAS  Google Scholar 

  21. [21]

    L.E. Depero, P. Bonzi, M. Musci and C. Casale, J. Solid State Chem. 111 (1994) 247.

    Article  CAS  Google Scholar 

  22. [22]

    K.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo and H. Nagamoto, J. Mater. Chem. 3 (1993) 923.

    Article  CAS  Google Scholar 

  23. [23]

    JCPDF Card No. 14 576.

  24. [24]

    B. Gerand, G. Nowogrodzki and M. Figlarz, J. Solid State Chem. 38 (1981) 312.

    Article  CAS  Google Scholar 

  25. [25]

    R. Roth and J. Waring, J. Res. NBS 70A (1966) 281.

    Google Scholar 

  26. [26]

    B. Gerand, G. Nowogrodzki, J. Guenot and M. Figlarz, J. Solid State Chem. 29 (1979) 429.

    Article  CAS  Google Scholar 

  27. [27]

    D. Dollimore and G.R. Heal, J. Appl. Chem. 14 (1964) 109.

    CAS  Article  Google Scholar 

  28. [28]

    G. Exarhos and N. Hess, Thin Solid Films 220 (1992) 254.

    Article  CAS  Google Scholar 

  29. [29]

    T.R. Gilson, O.F. Bizri and N. Cheetham, J. Chem. Soc. Dalton Trans. 291 (1973).

  30. [30]

    I.R. Beattie and T.R. Gilson, J. Chem. Soc. A (1969) 2322.

  31. [31]

    I.E. Wachs, R.Y. Saleh, S.S. Chan and C.C. Cherissh, Appl. Catal. 15 (1985) 339.

    Article  CAS  Google Scholar 

  32. [32]

    T. Machej, J. Haber, A.M. Turek and I.E. Wachs, Appl. Catal. 70 (1991) 115.

    Article  CAS  Google Scholar 

  33. [33]

    M. Najbar, A. Białas, A. Wesełucha-Birczyńska, in: Proc. Int. Conf. on Catalysis and Adsorption in Fuel Processing and Environmental Protection, eds. B. Pniak, J. Trawczński and J. Walendziewski (Wrocław University of Technology, Wrocław, 1999) p. 427.

    Google Scholar 

  34. [34]

    I. Wachs and S. Chan, Appl. Surf. Sci. 20 (1984) 181.

    Article  CAS  Google Scholar 

  35. [35]

    K. Brzezinka, B. Lucke, A. Martin, M. Meisel and K. Witke, Chem. Mater. 9 (1997) 1086.

    Article  Google Scholar 

  36. [36]

    A. Bielański and M. Najbar, Appl. Catal. A 157 (1997) 223.

    Article  Google Scholar 

  37. [37]

    A. Michalak, M. Witko and K. Hermann, Surf. Sci. 375 (1997) 385.

    Article  CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Najbar, M., Mizukami, F., Białas, A. et al. Evolution of Ti–Sn-rutile-supported V2O5–WO3 catalyst during its use in nitric oxide reduction by ammonia. Topics in Catalysis 11, 131–138 (2000). https://doi.org/10.1023/A:1027299931119

Download citation

  • rutile supported V2O5–WO3 catalyst
  • evolution
  • NO reduction