Receptor-based prediction of binding affinities

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gund, P., Three-dimensional pharmacophoric pattern searching, Prog. Mol. Subcell. Biol., 11 (1997). s117–143.

    Google Scholar 

  2. 2.

    Jakes, S.E., Watts, N., Willett, P., Bawden, D., and Fisher, J.D., Pharmacophoric pattern matching in files of 3D chemical structures: Evaluation of search performance, J. Mol. Graph., 5, (1987), 41–48.

    Google Scholar 

  3. 3.

    Jakes, S.E., and Willett, P., Pharmacophoric pattern matching in files of 3D chemical structures: Selection of interatomic distance screens, J. Mol. Graphics, 4, (1986) 12–20. Receptor-Based Prediction of Binding Affinities

    Google Scholar 

  4. 4.

    Sheridan, R.P., Rusinko, A., III, Nilakantan, R., Venkataraghavan R.,, Searching for pharmacophores in large coordinate data bases and its use in drug design, Proc. Natl. Acad. Sci. USA, 86, (1989), 8165–8169.

    Google Scholar 

  5. 5.

    Van Drie, J.H., Weininger, D., and Martin, Y.C., ALADDIN: An integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric and substructure searching of three-dimensional molecular structures, J. Comput.-Aided Mol. Design, 3 (1989) 225–251.

    Google Scholar 

  6. 6.

    Martin, Y.C., 3D Database Searching in Drug Design, J. Med. Chem., 35 (1992), 2145–2154.

    Google Scholar 

  7. 7.

    Martin, Y.C., Bures, M.G., Danaher, E.A., and DeLazzer, J., New strategies that improve the efficiency of the 3D design of bioctive molecules, In Trends in QSAR and molecular modelling 92, Wermuth, C.G., (Ed.) ESCOM, Leiden, 1993, P. 20–27.

    Google Scholar 

  8. 8.

    Kuntz, I.D, Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., A geometric approach to macro-molecule-ligand interactions, J. Mol. Biol., 161 (1982) 269–288.

    Google Scholar 

  9. 9.

    DesJarlais, R.L., Seibel, G.L., Dixon, J.S., and Kuntz, I.D., Using shape complimentarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure, J. Med. Chem., 31 (1990) 722–729.

    Google Scholar 

  10. 10.

    DesJarlais, R.L., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., de Montellano, P.R O., DeCamp, D.L., Babe, L.M. Craik, C.S., Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease, Proc. Natl. Acad. Sci. USA, 87, (1990) 6644–6648.

    Google Scholar 

  11. 11.

    Oshiro, C.M., Kuntz, I.D., Dixon, J.S., Flexible ligand docking using a genetic algorithm, J. Comput.-Aided Mol. Design, 9 (1995) 113–130.

    Google Scholar 

  12. 12.

    Ring C, Sun E., McKerrow J., Lee G., Rosenthal P., Kuntz I., and Cohen F., Structure-based inhibitor design by using protein models for the development of antiparasitic agents, Proc. Natl. Acad. Sci. USA, 90, (1993), 3583–3587.

    Google Scholar 

  13. 13.

    Shoichet, B.K., Stroud, R.M., Santi, D.V. Kuntz, I.D., and Perry, K.M., Structure-based discovery of inhibitors of thymidylate synthase, Science, 259, (1993), 1445–1450.

    Google Scholar 

  14. 14.

    Caflisch, A., Miranker, A. and Karplus, M., Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase, J. Med. Chem., 36, (1993), 2142–2167.

    Google Scholar 

  15. 15.

    Oprea, T.I., Waller, C.L., and Marshall, G.R., Viral proteases: Structure and function, In Cellular proteo-lytic systems, Ciechanover, A. and Schwartz, A. (Eds.), Wiley-Liss, Inc., New York, 1994, pp. 183–221.

    Google Scholar 

  16. 16.

    Shuker, S.B., Hajduk, P.J., Meadows R.P. and Fesik, S.W., Discovering high-affinity ligands for proteins: SAR by NMR, Science, 274, (1996), 1531–1534.

    Google Scholar 

  17. 17.

    Lewis, R. and Dean, P., Automated site-directed drug design: the concept of spacer skeletons for primary structure generation, Proc. R. Soc. Lond. [Biol.], 236 (1989) 125–140.

    Google Scholar 

  18. 18.

    Lewis, R. and Dean, P., Automated site-directed drug design: The formation of molecular templates in primary structure generation, Proc. R. Soc. Lond. [Biol.], 236 (1989) 141–162.

    Google Scholar 

  19. 19.

    Ho, C.M.W. and Marshall, G.R., Cavity search: An algorithm for the isolation and display of cavity-like binding regions, J. Comput.-Aided Mol. Design, 4 (1990) 337–354.

    Google Scholar 

  20. 20.

    Miranker, A. and Karplus, M., Functionality maps of binding sites: A multiple copy simultaneous search method, Proteins: Struct. Funct. Genet. 11 (1991) 29–34.

    Google Scholar 

  21. 21.

    Moon, J.B., and Howe, W.J., Computer design of bioactive molecules: A method for receptor-based de novo ligand design, Proteins: Struct. Funct. Genet. 11 (1991) 314–328.

    Google Scholar 

  22. 22.

    Nishibata, Y. and Itai, A., Automatic creation of drug candidate structures based on receptor structure: Starting point for artificial lead generation, Tetrahedron, 47 (1991) 8985–8990.

    Google Scholar 

  23. 23.

    Böhm, H.-J., The computer program LUDI: A new method for the de novo design of enzyme inhibitors, J. Comput.-Aided Mol. Design, 6 (1992) 61–78.

    Google Scholar 

  24. 24.

    Borman, S., New 3-D search and de novo design techniques aid drug development, C&EN, (1992) 18–26.

  25. 25.

    Chau, P.L., and Dean, P.M., Automated site-directed drug design: An assessment of the transferability of atomic residual charges (CNDO) for molecular fragments, J. Comput.-Aided Mol. Design, 6 (1992) 407–426.

    Google Scholar 

  26. 26.

    Chau, P.L., and Dean, P.M., Automated site-directed drug design: Searches of the Cambridge Structural Database for bond lengths in molecular fragments to be used for automated structure assembly, J. Comput-Aided. Mol. Design, 6 (1992) 397–406.

    Google Scholar 

  27. 27.

    Chau, P.L., and Dean, P.M., Automated site-directed drug design: The generation of a basic set of fragments to be used for automated structure assembly, J. Comput-Aided. Mol. Design, 6 (1992) 385–396.

    Google Scholar 

  28. 28.

    Ho, C.M.W. and Marshall, G.R., FOUNDATION: A program to retrieve subsets of query elements, including active site region accessibility, from three-dimensional databases, J. Comput.-Aided Mol. Design, 7 (1993) 3–22.

    Google Scholar 

  29. 29.

    Ho, C.M.W., and Marshall, G. R, SPLICE: A program to assemble partial query solutions from three-dimensional database searches into novel ligands, J. Comput.-Aided Mol. Design, 7 (1993) 623–647.

    Google Scholar 

  30. 30.

    Rotstein, S.H., and Murcko, M.A., Group Build: A fragment-based method for de novo drug design, J. Med. Chem., 36, (1993) 1700–1710.

    Google Scholar 

  31. 31.

    Ho, C.M.W. and Marshall, G.R., DBMAKER: A program to generate 3D databases based upon user specified criteria, J. Comput.-Aided Mol. Design, 8 (1994) 65–86.

    Google Scholar 

  32. 32.

    Ho, C.M.W. and Marshall, G., De novo design of ligands, In Proceedings of the twenty-seventh annual Hawaii International Conference on system sciences, Hunter, L. (Ed.) IEEE Computer Society Press, Washington, DC, Vol. 5 1994, pp. 213–220.

    Google Scholar 

  33. 33.

    Bohacek, R.S. and McMartin C., Multiple highly diverse structures complementary to enzyme binding sites: Results of extensive application of a de novo design method incorporating combinatorial growth, J. Am. Chem. Soc., 116 (1994) 5560–5571.

    Google Scholar 

  34. 34.

    Roberts, N.A., Martin, J.A., Kinchington, D., Broadhurst, A.V., Craig, J.C., Duncan I. B., Galpin, S.A., Handa, B.K., Kay, J., Krohn, A., Lambert, R.W., Merrett, J.H., Mills J. S., Parkes, K.E.B., Redshaw, S., Ritchie, A.J., Taylor, D.L., Thomas, G.J., and Machin, P. J, Rational design of peptide-based HIV proteinase inhibitors, Science, 248 (1990) 358–361.

    Google Scholar 

  35. 35.

    Tomasselli, A.G., Hui, J.O., Sawyer, T.K., Thaisrivongs, S., Hester, J.B. and Heinrikson R.L., The evaluation of non-viral substrates of the HIV protease as leads in the design of inhibitors for AIDS therapy, Adv. Exp. Med. Biol., 306 (1991) 469–482.

    Google Scholar 

  36. 36.

    Thaisrivongs, S., Tomasselli, A., Moon, J., Hui, J., McQuade, T., Turner, S., Stronbach, J., Howe, J. Tarpley, W., and Heinrikson, R., Inhibitors of the protease from human immunodeficiency virus: Design and modeling of a compound containing a dihydroxethylene isostere insert with a high binding affinity and effective antiviral activity, J. Med. Chem., 34 (1991) 2344–2356.

    Google Scholar 

  37. 37.

    Thanki, N., Rao, J., Foundling, S., Howe, W., Moon, J., Hui, J., Tomasselli, A., Heinrikson, R., Thaisrivongs, S., and Wlodawer, A., Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: Comparisons with molecular modeling, Protein Science, 1 (1992) 1061–1072.

    Google Scholar 

  38. 38.

    Thaisrivongs, S., Turner, S., Strohbach, J., TenBrink, R., Tarpley, W., McQuade, T., Heinrickson., R., Tomasselli, A., Hui, J., and Howe, W., Inhibitors of the protease for the HIV: Synthesis, enzyme inhibi-tion and antiviral activity of a series of compounds containing the dihydroxyethylene transition-state isostere, J. Med. Chem., 36 (1993) 941–952.

    Google Scholar 

  39. 39.

    Lam, P.Y., Jadhave, P.K., Eyermann, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, N.M., Wong, Y.N., et al., Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors, Science, 263 (1994) 380–384.

    Google Scholar 

  40. 40.

    Lunney, E.A., Hagen, S.E., Domagala, J.M., Humblet, C., Kosinski, J., Tait, B.D., Warmus, J.S., Wilson, M., Ferguson, D., et al., A novel nonpeptide HIV-1 protease inhibitor: elucidation of the binding mode and its application in the design of related analogs, J. Med. Chem., 37 (1994) 2664–2667.

    Google Scholar 

  41. 41.

    Thaisrivongs, S., Tomich, P.K., Watenpaugh, K.D., Chong, K.T., Howe, W.J., Yang, C.P., Strohbach, J.W., Turner, S.R., McGrath, J.P., Bohanon, M.J., et al. Structure-based design of HIV protease in-hibitors: 4-hydroxycoumarins and 4-hydroxy-2-pyrones as non-peptidic inhibitors, J. Med. Chem., 37 (1994) 3200–3204.

    Google Scholar 

  42. 42.

    Oprea, T.I., Ho, C.M.W., and Marshall, G.R., De novo design: Ligand construction and prediction of affinity, In Application of computer-aided molecular design: Agrochemicals, materials and phar-maceuticals, Reynolds, C.H., Holloway M.K., and Cox, H., (Eds.) ACS, Washington DC, 1995, pp. 64–81.

    Google Scholar 

  43. 43.

    Caflisch, A., Computational combinatorial ligand design: Application to human alpha-thrombin, J. Comput.-Aided Mol. Design, 10 (1996) 372–396.

    Google Scholar 

  44. 44.

    Böhm, H.-J., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Comput.-Aided Mol. Design, 8 (1994) 243–256.

    Google Scholar 

  45. 45.

    Wallqvist, A., Jernigan, R.L., and Covell, D.G., A preference-based free-energy parameterization of enzyme-inhibitor binding: Applications to HIV-1 protease inhibitor design, Protein Sci., 4, (1995) 1881–1903.

    Google Scholar 

  46. 46.

    Verkhivker, G., Appelt, K., Freer, S.T., and Villafranca, J.E., Empirical free energy calculations of ligand-protein crystallographic complexes: I. Knowledge-based ligand-protein Interaction Potentials Applied to the Prediction of HIV-1 Protease Binding Affinity, Protein Eng., 8 (1995) 677–691.

    Google Scholar 

  47. 47.

    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Greene S.M., and Marshall, G.R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc., 118 (1996) 3959–3969.

    Google Scholar 

  48. 48.

    Jain, A., Scoring non-covalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities, J. Comput.-Aided Mol. Design, 10 (1996) 427–440.

    Google Scholar 

  49. 49.

    Kollman P., Free energy calculations: Application to chemical and biochemical phenomena, Chem., Rev., 93 (1993) 2395–2417.

    Google Scholar 

  50. 50.

    Åqvist, J., Medina C. and Samuelsson, J.-E., A new method for predicting binding affinity in computer.-aided drug design, Protein Eng., 7 (1994) 385–391.

    Google Scholar 

  51. 51.

    Åqvist, J., and Mowbray, S.L., Sugar recognition by a glucose/galactose receptor: Evaluation of binding energetics from molecular dynamics simulations, J. Biol. Chem., 270, (1995) 9978–9981.

    Google Scholar 

  52. 52.

    Gilson, M.K., Given J.A., and Head, M.S., A new class of models for computing receptor-ligand binding affinities, Chem, Biol., 4 (1997) 87–92.

    Google Scholar 

  53. 53.

    Head, M.S., Given J.A., and Gilson M.K., Mining minima: Direct computation of conformational free energy, J. Phys. Chem. A, 101 (1997) 1609–1618.

    Google Scholar 

  54. 54.

    Holloway, M.K., Structure-based design of human immunodeficiency virus-I protease inhibitors: correlating calculated energy with activity in Application of computer-Aided molecular design: Agrochemicals, materials and pharmaceuticals, Reynolds, C.H., Holloway M.K., and Cox, H. (Eds.) ACS, Washington DC, 1995, p. 82.

    Google Scholar 

  55. 55.

    Waller, C.L., Oprea, T.I., Giolitti, A., and Marshall, G.R., 3D QSAR of human immunodeficiency virus-I protease inhibitors: I. A CoMFA study employing experimentally-determined alignment rules, J. Med. Chem., 36 (1993) 4152–4160.

    Google Scholar 

  56. 56.

    Oprea, T.I., Waller, C.L., and Marshall, G.R., 3D-QSAR of human immunodeficiency virus-I protease in-hibitors: II. Predictive power using limited exploration of alternate binding modes, J. Med. Chem., 37 (1994) 2206–2215.

    Google Scholar 

  57. 57.

    Oprea, T.I., Waller, C.L., and Marshall, G.R., 3D-QSAR of human immunodeficiency virus-I protease in-hibitors: III. Interpretation of CoMFA results, Drug Des. Discov., 12 (1994) 29–51.

    Google Scholar 

  58. 58.

    Ajay, and Murcko, M., Computational methods to predict binding free energy in ligand-receptor complexes, J. Med. Chem., 38 (1995) 4953–4967.

    Google Scholar 

  59. 59.

    Xue, Q., and Yeung, E.S., Differences in the chemical reactivity of individual molecules of an enzyme, Nature, 373 (1995) 681–683.

    Google Scholar 

  60. 60.

    Searle, M.S., and Williams, D.H., The cost of conformational order: Entropy changes in molecular associations, J. Am. Chem. Soc., 114 (1992) 10690–10697.

    Google Scholar 

  61. 61.

    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi M., The Protein Data Bank: A computer-based archival file for macro-molecular structures, J. Mol., Biol., 112 (1977) 535–542.

    Google Scholar 

  62. 62.

    Connolly, M., Solvent-accessible surfaces of proteins and nucleic acids, Science, 221 (1983) 709–713.

    Google Scholar 

  63. 63.

    Bondi, A., Van der Waals volumes and radii, J. Phys. Chem., 68 (1964) 441–449.

    Google Scholar 

  64. 64.

    Sippl, M.J., Boltzmann's principle, knowledge-based mean fields and protein folding: An approach to the computational determination of protein structures, J. Comput.-Aided Mol. Design, 7 (1993) 473–501.

    Google Scholar 

  65. 65.

    Brooks, B.R., Bruccloleri, R.E., Olafson, D., States, D., Swaminathan, S. and Karplus, M., CHARMM: A program for macromolecular energy, minimization, and dynamics calculation, J. Comput. Chem., 4 (1983) 181–186.

    Google Scholar 

  66. 66.

    Gilli, P., Feretti, V., Gilli G. and Borea, P.A., Enthalpy-entropy compensation in drug receptor binding, J. Phys. Chem., 98 (1994) 1515–1518.

    Google Scholar 

  67. 67.

    Leo, A., Estimating log Poct from structures, Chem. Rev., 5 (1993) 1281–1306.

    Google Scholar 

  68. 68.

    Kellogg, G.E., Semus, S.F., and Abraham, D.J., HINT: A new method of empirical hydrophobic field calculation for CoMFA, J. Comput.-Aided Mol., Design, 5 (1991) 545–552.

    Google Scholar 

  69. 69.

    Le Grand, S.M. and Merz, K.M., Rapid approximation to molecular surface area via the use of Boolean logic and look-up tables, J. Comput. Chem., 14 (1993) 349–352.

    Google Scholar 

  70. 70.

    Still, W.C., Tempczyk, A., Hawley R.C., and Hendrickson, T., Semianalytical treatment of solvation for molecular mechanics and dynamics, J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  71. 71.

    Oprea, T.I., Head, R.D., and Marshall, G.R., The basis of cross-reactivity for a series of steroids binding to a monoclonal antibody against progesterone (DB3): A molecular modeling and QSAR study, In QSAR and molecular modelling: Concepts, computational tools and biological applications, Sanz, F., Giraldo, J., and Manaut, F. (Eds.) Prous Science Publishers, Barcelona, 1995, pp. 451–455.

    Google Scholar 

  72. 72.

    Rose, P.W., Scoring methods in ligand design, 2nd USCF Course in Computer-Aided Molecular Design, San Francisco, CA, 1997.

  73. 73.

    Gilson, M.K., Given, J.A., Bush, B.L., and McCammon, J.A., The statistical-thermodynamic basis for computation of binding affinities: A critical review, Biophys. J., 72 (1997) 1047–1069.

    Google Scholar 

  74. 74.

    García, A.E., and Stiller, L. Computation of the mean residence time of water in the hydration shells of biomolecules, J. Comput. Chem. 14 (1993) 1396–1406.

    Google Scholar 

  75. 75.

    Hummer, G., García, A.E., and Soumpasis, D.M., Hydration of nucleic acid fragments: Comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes, Biophys. J., 68 (1995) 1639–1652.

    Google Scholar 

  76. 76.

    Oprea, T.I., and Waller, C.L., Theoretical and practical aspects of three dimensional quantitative structure-activity relationships. In Reviews in Computational Chemistry, vol. 11, Lipkowitz, K.B., and Boyd, D.B. (Eds), Wiley, New York, 1997, pp. 127–182.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oprea, T.I., Marshall, G.R. Receptor-based prediction of binding affinities. Perspectives in Drug Discovery and Design 9, 35–61 (1998). https://doi.org/10.1023/A:1027299602978

Download citation

Keywords

  • Polymer
  • Binding Affinity