The use of self-organizing neural networks in drug design

This is a preview of subscription content, access via your institution.


  1. 1.

    Kubinyi, H. (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993.

  2. 2.

    Kohonen, T., Self-organized formation of topologically correct feature maps, Biol. Cybern., 43 (1982) 59–69; Self-Organization and Associative Memory, 3rd Ed., Springer, Berlin, 1989; Proc. IEEE, 78 (1990) 1460–1480; Self-Organizing Maps, Eds. Huang, T.S., Kohonen, T. and SchrÖder, M.R., Springer, Berlin, 1995.

    Google Scholar 

  3. 3.

    Zupan, J. and Gasteiger, J., Neural networks: a new method for solving chemical problems or just a passing phase?, Anal. Chim. Acta, 248 (1991) 1–30.

    Google Scholar 

  4. 4.

    Gasteiger, J. and Zupan, J., Neural networks in chemistry, Angew. Chem. Int. Ed. Engl., 32 (1993) 502–527; Angew. Chem., 105 (1993) 510–536.

    Google Scholar 

  5. 5.

    Zupan, J. and Gasteiger, J., Neural Networks for Chemists: An Introduction, VCH Publishers, Weinheim, 1993.

    Google Scholar 

  6. 6.

    Sadowski, J., Rudolph, C. and Gasteiger, J., The generation of 3D-models of host-guest complexes. Anal. Chim. Acta, 265 (1992) 233–241.

    Google Scholar 

  7. 7.

    Gasteiger, J., Rudolph, C. and Sadowski, J., Automatic generation of 3D-atomic coordinates for organic molecules, Tetrahedron Comput. Method., 3 (1990) 537–547.

    Google Scholar 

  8. 8.

    Sadowski, J. and Gasteiger, J., From atoms and bonds to three-dimensional atomic coordinates: Automatic model builders, Chem. Reviews, 93 (1993) 2567–2581.

    Google Scholar 

  9. 9.

    Sadowski, J., Gasteiger, J. and Klebe, G., Comparison of automatic three-dimensional model builders using 639 X-ray structures, J. Chem. Inf. Comput. Sci., 34 (1994) 1000–1008.

    Google Scholar 

  10. 10.

    Gasteiger, J. and Marsili, M., Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges, Tetrahedron, 36 (1980) 3219–3228.

    Google Scholar 

  11. 11.

    Gasteiger, J. and Saller, H., Calculation of the charge distribution in conjugated systems by a quantification of the resonance concept, Angew, Chem. Int. Ed. Engl., 24 (1985) 687–689; Angew. Chem., 97 (1985( 699–701.

    Google Scholar 

  12. 12.

    Hutchings, M.G. and Gasteiger, J., Residual Electronegativity - an empirical quantification of polar influences and its application to the proton affinity of amines, Tetrahedron Lett., 24 (1983) 2541–2544.

    Google Scholar 

  13. 13.

    Gasteiger, J. and Hutchings, M.G., Quantification of effective polarizability: Applications to studies of x-ray photoelectron spectroscopy and alkylamine protonation, J. Chem. Soc. Perkin, 2 (1984) 559–564.

    Google Scholar 

  14. 14.

    PETRA program package, Gasteiger, J., Marsili, M., Saller, H., Hutchings, M.G. and FrÖhlich, A., 1995.

  15. 15.

    SURFACE program, Version 1.0, Sadowski, J. and Gasteiger, J., 1994.

  16. 16.

    KMAP, Version 2.1, Li, X., Wagener, M. and Gasteiger, J., 1996.

  17. 17.

    Bauknecht, H. and Zell, A., Universität Stuttgart, 1995.

  18. 18.

    Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J. and Gasteiger, J., Locating biologically active compounds in medium-sized heterogeneous datasets by topological autocorrelation vectors: Dopamine and benzodiazepine agonists, J. Chem. Inf. Comput. Sci., 36 (1996) 1205–1213.

    Google Scholar 

  19. 19.

    Cramer, R.D., III, Patterson, D.E. and Bunce, J.D., Comparative molecular field analysis (CoMFA): 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959–5967.

    Google Scholar 

  20. 20.

    Wagener, M., Sadowski, J. and Gasteiger, J., Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic ah receptor activity by neural networks, J. Am. Chem. Soc., 117 (1995) 7769–7775.

    Google Scholar 

  21. 21.

    Dunn, J.F., Nisula, B.C. and Rodbard, D., Transport of steroid hormones: Binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma, J. Clin. Endocrinol. Metab., 53 (1981) 58–68.

    Google Scholar 

  22. 22.

    Mickelson, K.E., Forsthoefel, J. and Westphal, U., Steroid protein interactions, human corticosteroid binding globulin: Some physicochemical properties and binding specificity, Biochemistry, 20 (1981) 6211–6218.

    Google Scholar 

  23. 23.

    Westphal, U. (Ed.), Steroid-Protein Interaction II, Springer, Berlin, Germany, 1986.

    Google Scholar 

  24. 24.

    Good, A.C., So, S.S. and Richards, W.G., Structure-activity relationships from molecular similarity matrices, J. Med Chem., 36 (1993) 433–438.

    Google Scholar 

  25. 25.

    Jain, A.N., Koile, K. and Chapman, D., Compass: Predicting biological activities from molecular surface properties: Performance comparisons on a steroid benchmark, J. Med. Chem., 37 (1994) 2315–2327.

    Google Scholar 

  26. 26.

    Gasteiger, J., Li, X., Rudolph, C., J. Sadowski, J. and Zupan, J., Representation of molecular electro-static potentials by topological feature maps, J. Am. Chem. Soc., 116 (1994) 4608–4620.

    Google Scholar 

  27. 27.

    Gasteiger, J., Li, X. and Uschold, A., The beauty of molecular surfaces as revealed by self-organizing neural networks, J. Mol. Graphics, 12 (1994) 90–97.

    Google Scholar 

  28. 28.

    Li, X., Gasteiger, J. and Zupan, J., On the topology distortion in self-organizing feature maps, Biol. Cybern., 70 (1993) 189–198.

    Google Scholar 

  29. 29.

    Gasteiger, J. and Li, X., Mapping the electrostatic potential of muscarinic and nicotinic agonists with artificial neural networks, Angew. Chem. Int. Ed. Engl., 33 (1994) 643–646; Angew. Chem., 106 (1994) 671–674.

    Google Scholar 

  30. 30.

    Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M., Gasteiger, J. and Polanski, J., The comparison of geometric and electronic properties of molecular surfaces by neural networks: Application to the analysis of corticosteroid binding globulin activity of steroids, J. Comput.-Aided Mol. Design, 10 (1996) 521–534.

    Google Scholar 

  31. 31.

    Polanski, J., Gasteiger, J., Wagener, M. and Sadowski, J., The comparison of molecular surfaces by neural networks and its application to quantitative structure activity studies, Quant. Struct. Act. Relat. (in print).

  32. 32.

    Holzgrabe, U. and Mohr, K., Allosteric modulators of ligand binding to muscarinic acetylcholine receptors, Drug Discovery (in print).

  33. 33.

    Gasteiger, J., Holzgrabe, U., Kostenis, E., Mohr, K., Sürig, U. and Wagener, M., Variation of the oxime function of bispyridinium-type allosteric modulators of M2-cholinoceptors, Pharmazie, 50 (1995) 99–105.

    Google Scholar 

  34. 34.

    Bejeuhr, G., Holzgrabe, U., Mohr, K., Srüig, U. and von Petersenn, A., Molecular modelling and synthesis of potent stabilizers of antagonist binding to M2 -cholinoceptors, Pharm. Pharmacol. Lett., 2 (1992) 100–103.

    Google Scholar 

  35. 35.

    Holzgrabe, U., Wagener, M. and Gasteiger, J., Comparison of structurally different allosteric modulators of muscarinic receptors by self-organizing neural networks, J. Mol. Graph. 14 (1996) 185–195.

    Google Scholar 

  36. 36.

    Barlow, T.W.J., Self-organizing maps and molecular similarity, J. Mol. Graph., 13 (1995) 24–27.

    Google Scholar 

  37. 37.

    Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M. and Gasteiger, J., Evaluation of molecular surface properties using a Kohonen neural network: Studies on structure-activity relationships, In Devillers, J. (Ed.) Neural networks in QSAR and drug design, Academic Press, London, 1996, pp. 209–222.

    Google Scholar 

  38. 38.

    Polanski, J., Neural nets for the simulation of the molecular recognition of MS-WINDOWS environment, J. Chem. Inf. Comput. Sci., 36 (1996) 694–705.

    Google Scholar 

  39. 39.

    Polanski, J., The receptor-like neural network for modelling corticosteroid and testosterone binding globulins, J. Chem. Inf. Comput. Sci., 37 (1997) 553–561.

    Google Scholar 

  40. 40.

    Polanski, J., Ratajczak, A., Gasteiger, J., Galdecki, Z. and Galdecka, E., Molecular modelling and X-ray analysis for a structure-taste study of a-Arylsulfonylalkonoic acids, J. Mol. Struct.

  41. 41.

    Moreau, G. and Broto, P., Autocorrelation of molecular structures: Application to SAR studies, Nouv. J. Chim., 4 (1980) 757–764.

    Google Scholar 

  42. 42.

    Sadowski, J., Wagener, M. and Gasteiger, J. Assessing similarity and diversity of combinatorial libraries by spatial autocorrelation functions and neural networks, Angew. Chem. Int. Ed. Engl., 34 (1995) 2674–2677; Angew. Chem., 107 (1995) 2892–2895.

    Google Scholar 

  43. 43.

    Carell, T., Wintner, E.A., Bashir-Hashemi, A. and Rebek, J., Jr., A Novel Procedure for synthesis of libraries containing small organic molecules, Angew. Chem. Int. Ed. Engl., 33 (1994) 2059–2061; Angew. Chem., 106 (1994) 2159–2162; Carell, T., Wintner, E.A., Bashir-Hashemi, A. and Rebek, J., Jr., A solution-phase screening procedure for the isolation of active compounds from a library of molecules, Angew. Chem. Int. Ed. Engl., 33 (1994) 2061–2064; Angew. Chem., 106 (1994) 2162–2165.

    Google Scholar 

Download references


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anzali, S., Gasteiger, J., Holzgrabe, U. et al. The use of self-organizing neural networks in drug design. Perspectives in Drug Discovery and Design 9, 273–299 (1998).

Download citation


  • Polymer
  • Neural Network
  • Drug Design