Molecular dynamics simulations: a tool for drug design

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular cloning: A laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, 1989.

  2. 2.

    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.M., Kennard, O., Shimanouchi, T. and Tasumi, M., The protein data bank: a computer-based archival life for macro-molecular Structures, J. Mol. Biol., 112 (1977) 535–542.

    Google Scholar 

  3. 3.

    The current status (18 December 1996) of the PDB is: 5504 coordinate entries (5096 proteins, 396 nucleic acids, 12 carbohydrates).

  4. 4.

    Lybrand, T.P., Ligand-protein docking and rational drug design, Curr. Opin. Struct. Biol., 5 (1995) 224–228.

    Google Scholar 

  5. 5.

    Bamborough, P. and Cohen, F.E., Modeling protein-ligand complexes, Curr. Opin. Struct. Biol., 6 (1996) 236–241.

    Google Scholar 

  6. 6.

    Brooks, C.L., III, and Case, D.A., Simulations of peptide conformational dynamics and thermodynamics, Chem. Rev., 93 (1993) 2487–2502.

    Google Scholar 

  7. 7.

    Marshall, G.R., Barry, C.D., Bosshard, R.A., Dammkoehler, R.A. and Dunn, D.A., The conformational parameters in drug design: The active analog approach, In Olson, E.C. and Christoffersen, R.E. (Eds.) Computer-assisted drug design, ACS Symp. series, Vol. 112, American Chemical Society, Washington DC., 1979, pp. 205–226.

    Google Scholar 

  8. 8.

    Goodford, P.J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, J. Med. Chem., 28 (1985) 849–857.

    Google Scholar 

  9. 9.

    Gilson, M.K., Straatsma, T.P., McCammon, J.A., Ripoll, D.R., Faerman, C.H., Axelsen, P.H., Silman, I. and Sussmann, J.L., Open ‘back door’ in a molecular dynamics simulation of acetylcholinesterase, Science, 263 (1994) 1276–1278.

    Google Scholar 

  10. 10.

    Alder, B.J. and Wainwright, T.E., Studies in molecular dynamics: I. General methods, J. Chem. Phys., 31 (1959), 459–466.

    Google Scholar 

  11. 11.

    Rahman, A., Correlations in the motion of atoms in liquid argon, Phys. Rev, 136 (1964) 405–411.

    Google Scholar 

  12. 12.

    McCammon, J.A., Gelin, B.R. and Karplus, M., Dynamics of folded proteins, Nature, 267 (1977) 585–590.

    Google Scholar 

  13. 13.

    McCammon, J.A., Wolynes, P.G. and Karplus, M., Picosecond dynamics of tyrosine side chains in proteins, Biochemistry, 18 (1979) 927–42.

    Google Scholar 

  14. 14.

    van Gunsteren, W.F. and Karplus, M., Effect of constraints, solvent and crystal environment on protein dynamics, Nature, 293 (1981) 677–678.

    Google Scholar 

  15. 15.

    Plimpton, S. and Hendrickson, B., A new parallel method for molecular dynamics simulation of macro-molecular systems, J. Comput. Chem., 17 (1996) 326–337.

    Google Scholar 

  16. 16.

    Lim, K.T., Buinett, M., Iotov, M., McClurg, R.B., Vaideli, N., Dasgupta, S., Taylor, N. and Goddaard, III, W.R., Molecular dynamics for very large systems on massively parallel computers: The MPSim program, J. Comput. Chem., 18 (1997) 501–521.

    Google Scholar 

  17. 17.

    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, Jr., K.M., Ferguson, D.M., Spellmeyer, D.M., Fox, T., Caldwell, J.W. and Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc., 117 (1995) 5179–5197.

    Google Scholar 

  18. 18.

    Kitson, D.H., Avbelj, F., Moult, J., Nguyen, D.T., Mertz, J.E., Hadzi, D. and Hagler, A.T., On achieving better than 1 Å accuracy in a simulation of a large protein: Steptomyces griseus protease A, Proc. Natl. Acad. Sci. USA., 90 (1993) 8920–8924.

    Google Scholar 

  19. 19.

    Halgren, T., Merck molecular force-field: I. Basics, form, scope, parameterization and performance of MMFF94, J. Comput. Chem., 17 (1996) 490–511.

    Google Scholar 

  20. 20.

    Jorgensen, W.L., Maxwell, D.S. and Tirado-Rives, J., Development and testing of the OPLS all-atom force-field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 118 (1996) 11225–11236.

    Google Scholar 

  21. 21.

    van Gunsteren, W., Computer simulation of biomolecular systems: Overview of time-saving techniques, AIP Conf. Proc., 239 (1991) 131–146.

    Google Scholar 

  22. 22.

    Brunne, R.M., Berndt, K.D., Guntert, P., Wuthrich, K. and van Gunsteren, W.F., Structure and internal dynamics of the bovine pancreatic trypsin inhibitor in aqueous solution from long-time molecular dynamics simulations, Proteins: Struct. Funct. Genet., 23 (1995) 49–62.

    Google Scholar 

  23. 23.

    Weerasinghe, S., Smith, P.E. and Pettitt, B.M., Structure and stability of a model pyrimidine- purine-purine DNA triple helix with a GC.T mismatch by simulation, Biochemistry, 34 (1995) 16269–78.

    Google Scholar 

  24. 24.

    York, D.M., Vlodawer, A., Pedersen, L.G. and Darden, T.A., Atomic-level accuracy in simulations of large protein crystals, Proc. Natl. Acad. Sci. USA., 91 (1994) 8715–8718.

    Google Scholar 

  25. 25.

    Elber, R.E., Novel methods for molecular dynamics simulations, Current Opin. Struct. Biol., 6 (1996) 232–235.

    Google Scholar 

  26. 26.

    van Gunsteren, W.F. and Berendsen, H.J., Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry, Angew. Chem., Int. Ed. Engl., 29 (1990) 992–1023.

    Google Scholar 

  27. 27.

    Brunger, A.T. and Karplus, M., Molecular dynamics simulations with experimental restraints, Acc. Chem. Res., 24 (1991) 54–61.

    Google Scholar 

  28. 28.

    Brunger, A.T., X-PLOR: A system for crystallography and NMR, Manual version 3.1, Yale University Press, New Haven, CT.

  29. 29.

    Kirkpatrick, S., Gelatti, C.D., Jr. and Vecchi, M.P., Optimisation by simulated annealing, Science, 220 (1983) 671–680.

    Google Scholar 

  30. 30.

    Amadei, A., Linssen, A.B. and Berendsen, H.J., Essential dynamics of proteins, Proteins: Struct. Funct. Genet., 17 (1993) 412–425.

    Google Scholar 

  31. 31.

    Huber, T., Torda, A.E. and van Gunsteren, W.F., Local elevation: A method for improving the searching properties of molecular dynamics simulations, J. Comput.-Aided. Mol. Design., 8 (1994) 694–708.

    Google Scholar 

  32. 32.

    Simmerling, C. and Elber, R.E., Hydrophobic collapse in a cyclic hexapeptide: Computer simulation of CHDLFC and CAAAAC in water, J. Am. Chem. Soc., 116 (1994) 2534–2547.

    Google Scholar 

  33. 33.

    Jagannadh, B., Kunwar, A.C., Thangavelu, R.P. and Osawa, E., New technique for conformational sampling of cyclic molecules using the AMBER force field: Application to 18-crown-6, J. Phys. Chem., 100 (1996) 14339–14342.

    Google Scholar 

  34. 34.

    Fronczek, F.R., Hemingway, R.W., McGraw, C.W., Steynberg, J.P., Helfer, C.A. and Mattice, W.L., Crystal structure, conformational analysis, and molecular dynamics of tetra-O-methyl-(+)-catechin, Biopolymers, 33 (1993) 275–282.

    Google Scholar 

  35. 35.

    Porter, L.J., Wong, R.Y., Benson, M., Chang, B.G., Wiswanadhan, V.N., Gandour, R.D. and Mattice, W.L., Conformational analysis of flavans: Proton NMR and molecular mechanical (MM2) studies of the benzopyran ring of 3′,4′,5,7-tetrahydroxyflavan-3-ols: The crystal and molecular structure of the pro-cyanidin (2R, 3S, 4R)-3′,4′,5,7-tetramethoxy-4(-2,4,6-trimethoxyphenyl)-flavan-3-ol, J. Chem. Res., 3 (1986) 86–87.

    Google Scholar 

  36. 36.

    Bryant, S.D., Attila, M., Salvadori, S., Guerrini, R. and Lazarus, L.H., Molecular dynamics conformations of deltorphin analogues advocate delta opioid binding site models, Pept. Res. 7 (1994) 175–184.

    Google Scholar 

  37. 37.

    Collins, S. and Hruby, V.J., Prediction of the conformational requirements for binding to the kappa-opioid receptor and its subtypes: I. Novel alpha-helical cyclic peptides and their role in receptor selectivity, Biopolymers, 34 (1994) 1231–1241.

    Google Scholar 

  38. 38.

    Folkers, G., Merz, A. and Rognan, D., CoMFA: Scope and limitations, In Kubinyi, H., (Ed.) 3D-QSAR: Theory, methods and applications, ESCOM Science Publishers B.V., Leiden, The Netherlands, 1993, pp. 583–618.

    Google Scholar 

  39. 39.

    Hopfinger, A.J. and Kawakami, Y., QSAR analysis of a set of benzothiopyranoindazole anti-cancer analogs based upon their DNA intercalation properties as determined by molecular dynamics simulation, Anti-Cancer Drug Design, 7 (1992) 203–17.

    Google Scholar 

  40. 40.

    Langer, T. and Wermuth, C.G., Inhibitors of prolyl endopeptidase: Characterization of the pharmacophoric pattern using conformational analysis and 3D-QSAR, J. Comput.-Aided Mol. Design, 7 (1993) 253–262.

    Google Scholar 

  41. 41.

    Rognan, D., Reddehase, M.J., Koszinowski, U.H. and Folkers, G., Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein, Proteins: Struct. Funct. Genet., 13 (1992) 70–85.

    Google Scholar 

  42. 42.

    Folkers, G., Merz, A. and Rognan, D., CoMFA as a tool for active site modelling, In Wermuth, C.G. (Ed.) Trends in QSAR and molecular modelling, ESCOM Science Publishers, Leiden, The Netherlands, 1993, pp. 233–244.

    Google Scholar 

  43. 43.

    Thibaut, U., Folkers, G., Klebe, G., Kubinyi, H., Merz, A. and Rognan, D., Recommendations for CoMFA studies and 3D QSAR publications, Quant. Struct.-Act. Relat., 13 (1994) 1.

    Google Scholar 

  44. 44.

    Ringe, D. and Petsko, G.A., Mapping protein dynamics by X-ray diffraction, Prog. Biophys. Mol. Biol., 45 (1985) 197–235.

    Google Scholar 

  45. 45.

    Bjorkman, P.J.J., Saper, M.A., Samraoui, B., Bennet, W.S., Strominger, J.L. and Wiley, D.C., Structure of the human class I histocompatibilty antigen, HLA-A2, Nature, 329 (1987) 506–512.

    Google Scholar 

  46. 46.

    Sussman, J.L., Harel, M., Frolow, W., Oefner, C., Goldman, A., Toker, L. and Silman, I., Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein, Science, 253 (1991) 872–879.

    Google Scholar 

  47. 47.

    Ripoll, D.R., Faerman, C.H., Axelsen, P.H., Simman, I. and Sussman, J.L., An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase, Proc. Natl. Acad. Sci. USA., 90 (1993) 5128–5132.

    Google Scholar 

  48. 48.

    Axelsen, P.H., Harel, M., Silman, I. and Sussman, J., Structure and dynamics of the active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and X-ray crystallography, Prot. Sci., 3 (1994) 188–197.

    Google Scholar 

  49. 49.

    Faerman, C., Ripoll, D., Bon, S., Le Feuvre, Y., Morel, N., Massoulie, J., Sussman, J.L. and Silman, I., Site-directed mutants designed to test the back-door hypothesis of acetylcholinesterase function, FEBS Lett., 3 (1996) 65–71.

    Google Scholar 

  50. 50.

    Heemels, M.T. and Ploegh, H.L., Generation, translocation and presentation of MHC class I-restricted peptides, Annu. Rev. Biochem., 64 (1995) 643–691.

    Google Scholar 

  51. 51.

    Townsend, A., Ohlen, C., Bastin, J., Ljunggren, H.G., Foster, L. and Karre, K., Associatio of class I major histocompatibility heavy and light chains induced by viral peptides, Nature, 340 (1989) 443–448.

    Google Scholar 

  52. 52.

    Madden, D.R., Gorga, J.C., Strominger, J.L. and Wiley, D.C., The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation, Nature, 353 (1991) 321–325.

    Google Scholar 

  53. 53.

    Rognan, D., Zimmermann, N., Jung, G. and Folkers, G., Molecular dynamics study of a complex between the human histocompatibility antigen HLA-A2 and the IMP58–66 nonapeptide from influenza virus matrix protein, Eur. J. Bochem., 208 (1992) 101–113.

    Google Scholar 

  54. 54.

    Madden, D.R, Garboczi, D.N. and Wiley, D.C., The antigenic identity of peptide/MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2, Cell, 75 (1993) 693–708.

    Google Scholar 

  55. 55.

    Blundell, T., Sibanda, B.L., Sternberg, M.J.E. and Thornton, J.M., Knowledge-based prediction of protein structures and the design of novel molecules, Nature, 326 (1987) 347–352.

    Google Scholar 

  56. 56.

    Vedani, A., Zbinden, P. and Snyder, J.P., Pseudo-receptor modeling: A new concept for the three-dimensional construction of receptor binding sites, J. Recept. Res., 13 (1993) 163–177.

    Google Scholar 

  57. 57.

    van Gunsteren, W.F. and Berendsen, H.J.C., Groningen molecular simulation (GROMOS) library manual, Biomos, Groningen.

  58. 58.

    Kern, P., Brunne, R.M., Rognan, D. and Folkers, G., A pseudo-particle approach for studying protein-ligand models truncated to their active sites, Biopolymers, 38 (1996) 619–637.

    Google Scholar 

  59. 59.

    Kern, P., Rognan, D. and Folkers, G., MD simulations in pseudo-particle fluids: Applications to active-site protein complexes, Quant. Struct.-Act. Relat., 14 (1995) 229–241.

    Google Scholar 

  60. 60.

    Bash, P.A., Singh, U.C., Langridge, R. and Kollman, P.A., Free energy calculation by computer simulation, Science, 236 (1987) 564–568.

    Google Scholar 

  61. 61.

    Kollman, P.A., Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules, Acc. Chem. Res., 29 (1996) 461–469.

    Google Scholar 

  62. 62.

    Pearlman, D.A. and Connelly, P.R., Determination of the differential effects of hydrogen bonding and water release on the binding of FK506 to native and Tyr82Phe82 FKBP-12 proteins using free energy simulations, J. Mol. Biol., 248 (1995) 696–717.

    Google Scholar 

  63. 63.

    Miyamoto, S. and Kollman, P.A., Absolute and relative binding free energy calculations of the inter-action of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches, Proteins: Struct., Funct., Genet., 16 (1993) 226–245.

    Google Scholar 

  64. 64.

    Bayly, C.I. and Kollmann, P.A., Molecular dynamics and free energy calculations on the peculiar bimodal alkali ion selectivity of an 8-subunit cavitand, J. Am. Chem. Soc. 116 (1994) 697–703.

    Google Scholar 

  65. 65.

    Branda, N., Wyler, R. and Rebek, J., Jr., Encapsulation of methane and other small molecular in a self-assembling superstructure, Science, 263 (1994) 1267–1268.

    Google Scholar 

  66. 66.

    Zacharias, M., Straatsma, T.P., McCammon, J.A. and Quiocho, F.A., Inversion of receptor binding preferences by mutagenesis: Free energy thermodynamic integration studies on sugar binding to L-arabinose binding, Biochemistry, 32 (1993) 7428–7434.

    Google Scholar 

  67. 67.

    Oroczo, M., Tirado-Rives, J. and Jorgensen, W.L., Mechanism for the rotamase activity of FK506 binding protein from molecular dynamics simulations, Biochemistry, 32 (1993) 12864–12874.

    Google Scholar 

  68. 68.

    Lau, F.T. and Karplus, M. Molecular recognition in proteins: Simulation analysis of substrate binding by a tyrosyl-tRNA synthetase mutant, J. Mol. Biol., 236 (1994) 1049–1066.

    Google Scholar 

  69. 69.

    Reddy, M.R., Varney, M.D., Kalish, V., Viswanadhan, V.N. and Appelt, K. Calculation of relative differences in the binding free energies of HIV1 protease inhibitors: A thermodynamic cycle perturbation approach, J. Med. Chem., 37 (1994) 1145–1152.

    Google Scholar 

  70. 70.

    Singh, S.B., Wemmer, D.E. and Kollman, P.A., Relative binding affinities of distamycin and its analog to d(CGCAAGTTGGC).d(GCCAACTTGCG): Comparison of simulation results with experiment, Proc. Natl. Acad. Sci. USA., 91 (1994) 7673–7677.

    Google Scholar 

  71. 71.

    Wlodek, S.T., Antosiewicz, J., McCammon, J.A., Straatsma, T.P., Gilson, M.K., Briggs, J.M., Humblet, C. and Sussman, J.L., Binding of tacrine and 6-chlorotacrine by acetylcholinesterase, Biopolymers, 38 (1996) 109–117.

    Google Scholar 

  72. 72.

    Reddy, M.R., Viswanadhan, V.N. and Weinstein, J.N., Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: A thermodynamic cycle-perturbation approach, Proc. Natl. Acad. Sci., 88 (1991) 10287–10291.

    Google Scholar 

  73. 73.

    Jones, J.P., Trager, W.F. and Carlson, T.J., The binding and regioselectivity of reaction of (R)-and (S)-nicotine with cytochrome P-450cam: Parallel experimental and theoretical studies, J. Am. Chem. Soc., 115 (1993): 381–387.

    Google Scholar 

  74. 74.

    Gillner, M., Bergman, J., Cambillau, C., Alexandersson, M. and Fernstrom, B., Interactions of indolo[3,2-b]carbazoles and related polycyclic aromatic hydrocarbons with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver, Mol. Pharmacol., 44 (1993) 336–45.

    Google Scholar 

  75. 75.

    Rao, B.G., Kim, E.E. and Murcko, M.A., Calculation of solvation and binding free energy differences betwen VX-478 and its analogs by free energy perturbation and AMSOL methods, J. Comput.-Aided Mol. Design, 10 (1996) 23–30.

    Google Scholar 

  76. 76.

    Miyamoto, S. and Kollman, P.A., What determines the strength of noncovalent association of ligands to proteins in aqueous solution?, Proc. Natl. Acad. Sci. USA, 90 (1993) 8402–8406.

    Google Scholar 

  77. 77.

    Jorgensen, W.L., Buckner, J.K., Boudon, S. and Tirado-Rives, J., Efficient computation of absolute free energies of binding by computer simulation: Application to the methane dimer in water, J. Chem. Phys., 89 (1988) 3741–3746.

    Google Scholar 

  78. 78.

    Mark, A. and van Gunsteren, W.F., Decomposition of the free energy of a system in terms of specific interactions: Implications for theoretical and experimental studies. J. Mol. Biol., 240 (1994) 167–176.

    Google Scholar 

  79. 79.

    Boresch, S., Achonitis, S. and Karplus, M., Free energy simulations: The meaning of the individual contributions from a component analysis. Proteins: Struct., Funct. Genet., 20 (1994) 25–33.

    Google Scholar 

  80. 80.

    Helms, V. and Wade, R.C., Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: A molecular dynamics study. Biophys. J., 69 (1995) 810–824.

    Google Scholar 

  81. 81.

    Poornima, C.S. and Dean, P.M. Hydration in drug design: 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. J. Comput.-Aided Mol. Design, 9 (1995) 500–512.

    Google Scholar 

  82. 82.

    Appelt, K., Bacquet, R.J., Bartlett, C.A., Booth, C.L., Freer, S.T., Fuhry, M.A., Gehring, M.R., Herrmann, S.M., Howland, E.F., Janson, C.A., Jones, T.R., Kan, C.-C., Kathardekar, V., Lewis, K.K., Marzoni, G.P., Matthews, D.A., Mohr, C., Moomaw, E.W., Morse, C.A., Oatley, S.J., Ogden, R.C., Reddy, M.R., Reich, S.H., Schoettlin, W.S., Smith, W.W., Varney, M.D., Villafranca, J.E., Ward, R.W., Webber, S., Webber, S.E., Welsh, K.M. and White, J., Design of enzyme inhibitors using iterative protein crystallographic analysis. J. Med. Chem., 7 (1991) 1925–1934.

    Google Scholar 

  83. 83.

    Lam, P.Y., Jadhav, P.K., Eyermann, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, M.M., Wong, Y.N., Chang, C.H., Webber, P.C., Jackson, D.A., Sharpe, T.R. and Erickson-Vittanen, S., Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors, Science, 263 (1994) 380–384.

    Google Scholar 

  84. 84.

    Blundell, T., Hubbard, R. and Weiss, M.A., Structural biology and diabetes mellitus: Molecular pathogenesis and rational drug design, Diabetologia, 35 (1992) 69–76.

    Google Scholar 

  85. 85.

    Rognan, D., Scapozza, L., Folkers, G. and Daser, A., Molecular dynamics simulation of MHC-peptide complexes as a tool for predicting potential T cell epitopes, Biochemistry, 33 (1994) 11476–11485.

    Google Scholar 

  86. 86.

    Rognan, D., Krebs, S., Kuonen, O., Lamas, J.R., López de Castro, J.A. and Folkers, G., Fine specificity of antigen for two class I major histocompatibility protein alleles (B*2705 and B*2703) differing in one amino acid, J. Comput.-Aided Mol. Design, 11 (1997) 463–478.

    Google Scholar 

  87. 87.

    Rognan, D., Scapozza, L., Folkers, G. and Daser, A., Rational design of nonnatural peptides as high-affinity ligands for the HLA-B*2705 human leukocyte antigen, Proc. Natl. Acad. Sci. USA, 92 (1995) 753–757.

    Google Scholar 

  88. 88.

    Scapozza, L., Rognan, D., Folkers, G. and Daser, A. Molecular dynamics and structure-based drug design for predicting non-natural nonapeptide binding to a class I MHC protein, Acta Cryst., D51 (1995) 541–549.

    Google Scholar 

  89. 89.

    Rognan, D., Molecular modelling of protein-peptide complexes: Application to major histocompatibility proteins, Habilitationschrift, Eidgenossiche Technische Hochschule (ETH), Zurich, 1997.

    Google Scholar 

  90. 90.

    Jardetzky, T.S., Lane, W.S., Robinson, R.A., Madden, D.R. and Wiley, D.C., Identification of self-peptides bound to purified HLA-B27, Nature, 353 (1991) 326–329.

    Google Scholar 

  91. 91.

    Daser, A., Henning, U. and Henklein, P., HLA-B27 binding peptides derived from the 57kD heat shock protein of Chlamydia trachomatis: Novel insights into the peptide binding rules, Mol. Immunol., 31 (1994) 331–336.

    Google Scholar 

  92. 92.

    Bouvier, M. and Wiley, D.C., Importance of peptide amino and carboxy termini to the stability of MHC class I molecules, Science, 265 (1994) 398–402.

    Google Scholar 

  93. 93.

    Szewczuk, Z., Gibbs, B.F., Yue, S.H., Purisima, E., Zdanov, A., Cygler, M. and Konishi, Y., Design of a linker for trivalent thrombin inhibitors: Interaction of the main chain of the linker with thrombin, Biochemistry, 32, (1993) 3396–3404.

    Google Scholar 

  94. 94.

    Connolly, M.J., Analytical molecular surface calculation, J. Appl. Crystallogr., 16 (1983) 548–558.

    Google Scholar 

  95. 95.

    Rognan, D. AS and immunotherapy: Future considerations, In, Lopez-Larrea, C. (Ed.) HLA-B27 in the development of spondyloarthropathies, R.G. Landes Co., Georgetown, MA, 1997, pp. 235–251.

    Google Scholar 

  96. 96.

    M.D. Paulsen and Ornstein R.L. Predicting the product specificity and coupling of cytochrome P450cam, J. Comput.-Aided Mol. Design, 6 (1992) 449–460.

    Google Scholar 

  97. 97.

    Bass, M.B. and Ornstein, R.L., Substrate specificity of cytochrome P450cam for L-and D-norcamphor as studied by molecular dynamics simulations, J. Comput. Chem., 14 (1993) 541–548.

    Google Scholar 

  98. 98.

    Bemis, G.W., Carlson-Golab, G. and Katzenellenbogen, J.A., A molecular dynamics study of the stability of chymotrypsin acyl enzymes, J. Am. Chem. Soc., 114 (1992) 570–578.

    Google Scholar 

  99. 99.

    Taylor, N.R. and von Itzstein, M., Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis, J. Med. Chem., 34 (1994) 616–624.

    Google Scholar 

  100. 100.

    Helms, V., Deprez, E., Gill, E., Barret, C., Hui Bon Hoa, G. and Wade, R.C., Improved binding of Cytochrome P450cam substrates analogues designed to fill extra space in the substrate binding pocket, Biochemistry, 35 (1996) 1485–1499.

    Google Scholar 

  101. 101.

    Boisgérault, F., Tieng, V., Stolzenberg, M.C, Dulphy, N., Khalil, I., Tamouza, R., Charron, D. and Toubert, A., Differences in endogenous peptides presented by HLA-B*2705 and B*2703 allelic variants: Implications for susceptibility to spondyloarthropathies, J. Clin. Invest., 98 (1996) 2764–2770.

    Google Scholar 

  102. 102.

    Klebe, G., The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands, J. Mol. Biol., 237 (1994) 212–235.

    Google Scholar 

  103. 103.

    Mills, J.E.J. and Dean, P.M., Three-dimensional hydrogen-bond geometry and probability information from a crystal survey, J. Comput.-Aided Mol. Design, 10 (1996) 607–622.

    Google Scholar 

  104. 104.

    Pearlman, D.A., Case, D.A., Caldwell, J.C., Ross, W.S., Cheatham, T.E., III

  105. 105.

    Ferguson, D.E., Seibel, G.L., Singh, C., Weiner, P.K. and Kollmann, P.A., AMBER 4.1, University of California, San Francisco, CA, U.S.A., 1995.

    Google Scholar 

  106. 106.

    Lewis, R.A. and Leach, A.R., Current methods for site-directed structure generation, J. Comput.-Aided Mol. Design, 8 (1994) 467–475.

    Google Scholar 

  107. 107.

    Pearlman, D.A. and Murcko, M.A., CONCEPTS: New dynamic algorithm for de novo drug suggestion, J. Comput. Chem., 14 (1993) 1184–1193.

    Google Scholar 

  108. 108.

    Pearlman, D.A. and Murcko, M.A., CONCERTS: Dynamic connection of fragments as an approach to de novo ligand design, J. Med. Chem., 39 (1996) 1651–1663.

    Google Scholar 

  109. 109.

    Sandak, B., Nussinov, R. and Wolfson, H.J., An automated computer vision and robotics-based technique for 3-D flexible biomolecular docking and matching, Comput. Appl. Biosci., 11 (1995) 87–99.

    Google Scholar 

  110. 110.

    Rarey M., Kramer B., Lengauer T. and Klebe G., A fast flexible docking method using an incremental construction algorithm, J. Mol. Biol., 261 (1996) 470–489.

    Google Scholar 

  111. 111.

    Morris, G.M., Goodsell, R., Huey, R. and Olson, A.J., Distributed automatic docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4, J. Comput.-Aided Mol. Design, 4 (1996) 293–304.

    Google Scholar 

  112. 112.

    Di Nola, A., Roccatano, D. and Berendsen, H.J.C., Molecular dynamics simulation of the docking of substrates to proteins, Proteins: Struct., Funct. Genet., 19 (1994) 174–182.

    Google Scholar 

  113. 113.

    Tirado-Rives, J. and Jorgensen, W.L., Viability of molecular modeling with pentium-based Pcs, J. Comput. Chem., 17 (1996) 1385–1386.

    Google Scholar 

  114. 114.

    Jorgensen, W.L. and Tirado-Rives, J., Monte Carlo vs molecular dynamics for conformational sampling, J. Phys. Chem., 100 (1996) 14508–14513.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rognan, D. Molecular dynamics simulations: a tool for drug design. Perspectives in Drug Discovery and Design 9, 181–209 (1998). https://doi.org/10.1023/A:1027268223451

Download citation

Keywords

  • Polymer
  • Molecular Dynamic
  • Molecular Dynamic Simulation
  • Dynamic Simulation
  • Drug Design