Some biological applications of semiempirical MO theory

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ferenczy, G.G., Rivail, J.-L., Surján P.R. and Náray-Szab!o, G., NDDO fragment self-consistent field approximation for large electronic systems, J. Comput. Chem., 13 (1992) 830–837.

    Google Scholar 

  2. 2.

    Náray-Szab!o, G., Towards a molecular orbital method for the conformational analysis of very large biomolecules, Acta Phys. Acad. Sci. Hung., 40 (1976) 261–273.

    Google Scholar 

  3. 3.

    Stewart, J.J.P., Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations, Int. J. Quant. Chem., 58 (1996) 133–146.

    Google Scholar 

  4. 4.

    Zhao, Q. and Yang, W., Analytical energy gradients and geometry optimisation in the divide-and-conquer methods for large molecules, J. Chem. Phys., 102 (1995) 9598–9603.

    Google Scholar 

  5. 5.

    Yang, W. and Lee, T.-S., A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules, J. Chem. Phys., 103 (1995) 5674–5678.

    Google Scholar 

  6. 6.

    Lee, T.-S., York, D.M. and Yang, W., Linear scaling semiempirical quantum calculations of macromolecules, J. Chem. Phys., 105 (1996) 2744–2750.

    Google Scholar 

  7. 7.

    Dixon, S.L. and Merz, Jr., K.M., Semiempirical molecular orbital calculations with linear system size scaling, J. Chem. Phys., 104 (1996) 6643–6649.

    Google Scholar 

  8. 8.

    White, C.A., Johnson, B.G., Gill, P.M.W. and Head-Gordon, M., The continuous fast multipole method, 230 (1994) 8–18.

    Google Scholar 

  9. 9.

    Strain, M.C., Scuseria, G.E. and Frisch, M.J., Achieving linear scaling for the electronic Coulomb problem, Science 271 (1996) 51–53.

    Google Scholar 

  10. 10.

    Teeter, M.M., Roe, S.M. and Heo, N.H., Atomic resolution (0.83 Angstr/om) crystal structure of the hydrophobic protein crambin at 130 K, J. Mol. Biol., 230 (1993) 292–311.

    Google Scholar 

  11. 11.

    Deisenhofer, J., Crystallographic refinement of the structure of bovine pancreatic trypsin inbibitor at 1.5 Å resolution, Acta Crystallograph. B, 31 (1975) 238–250.

    Google Scholar 

  12. 12.

    Stewart, J.J.P., MOPAC7 Version2 manual, QCPE, Bloomington, IN, 1993.

    Google Scholar 

  13. 13.

    Klamt, A. and Schürmann, G., COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradients, Perkin Trans., 2 (1993) 799–805.

    Google Scholar 

  14. 14.

    Troung, T.N. and Stephanovich, E.V., Analytical first and second energy derivatives of the generalized conductorlike screening model for free energy of solvation, J. Chem. Phys., 103 (1995) 3709–3717.

    Google Scholar 

  15. 15.

    Andzelm, J., Kölmel, C. and Klamt, A., Incorporation of solvent effects into density functional calculations of molecular energies and geometrics, J. Chem. Phys., 103 (1995) 9312–9320.

    Google Scholar 

  16. 16.

    York, D., Lee, T.-S. and Yang, W., Chem. Phys. Lett. (submitted).

  17. 17.

    Warshel, A. and Levitt, M., Theoretical studies of enzymic reactions: 1. Dielectric electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme, J. Mol. Biol., 103 (1976) 227–235.

    Google Scholar 

  18. 18.

    Field, M.J., Bash, P.A. and Karplus, M., A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulation, J. Comput. Chem., 11 (1990) 700–733.

    Google Scholar 

  19. 19.

    Vasiyev, V.V., Bliznyuk, A.A. and Voityuk, A.A., A combined quantum chemical molecular mechanical study of hydrogen bonded systems, Int. J. Quant. Chem., 44 (1992) 897–930.

    Google Scholar 

  20. 20.

    Théry, V., Rinaldi, D., Rivail, J.-L., Maigret, B. and Ferenczy, G.J., Quantum mechanical computations on very large systems: The local self-consistent field method, J. Comput. Chem., 15 (1994) 269–282.

    Google Scholar 

  21. 21.

    Thompson, M.A., Glendening E.D. and Feller, D., The nature of K+/crown ether interactions: A hybrid quantum mechanical-molecular mechanical study, J. Phys. Chem., 98 (1994) 10465–10476.

    Google Scholar 

  22. 22.

    Thompson, M.A. and Schenter, G.K. Excited states of the bacteriochlorophyll 6 dimer of rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarisation, J. Phys. Chem., 99 (1995) 6374–6386.

    Google Scholar 

  23. 23.

    Bakowies, D. and Thiel, W., Hybrid models for combined quantum mechanical and molecular mechanical approaches, J. Phys. Chem., 100 (1996) 10580–10594.

    Google Scholar 

  24. 24.

    Alex, A., Beck, B., Lanig, H., Rauhut, G. and Clark, T. (paper in preparation).

  25. 25.

    Stanton, R.V., Hartsough, D.S. and Merz, Jr., K.M., An examination of a density functional/molecular mechanical coupled potential, J. Comput. Chem., 16 (1996) 113–128.

    Google Scholar 

  26. 26.

    Bernardi, F., Olivucci, M. and Robb, M.A., Simulation of MC-SCF results on covalent organic multi-bonds reactions: Molecular mechanics with valence bond (MM-VB), J. Am. Chem. Soc., 114 (1992) 1606–1616.

    Google Scholar 

  27. 27.

    Aqvist, J. and Warshel, A., Simulation of enzyme reactions using valence bond force fields and other hybrid quantum classical approaches, Chem. Rev., 93 (1993) 2523–2530.

    Google Scholar 

  28. 28.

    Singh, U.C. and Kollman, P.A., A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3 Cl + Cl - ex-change reaction and gas phase protonation of polyethers, J. Comput. Chem., 7 (1986) 718–730.

    Google Scholar 

  29. 29.

    Allinger, N.L., Yuh, Y.H. and Lii, J.-H., Molecular mechanics: The MM3 force field for hydrocarbons 1, J. Am. Chem. Soc., 111 (1989) 8551–8582.

    Google Scholar 

  30. 30.

    Pearlman, D.A, Case, D.A., Ross, J.W., Cheatham, III, T.E., Ferguson, D.M., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A., AMBER 4.1, University of California, San Francisco, CA, 1995.

    Google Scholar 

  31. 31.

    Brooks, B.R., Burccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., CHARMm: A program for macromolecular energy, minimization and dynamics calculations, J. Comput. Chem., 4 (1983) 187–217.

    Google Scholar 

  32. 32.

    Bash, P.A., Field, M.J. and Karplus, M., Free energy perturbation method for chemical reactions in the condensed phase: A dynamical approach based on a combined quantum and molecular mechanics potential, J. Am. Chem. Soc., 109 (1987) 8092–8094.

    Google Scholar 

  33. 33.

    Gao, J., Absolute free energy of solution from Monte Carlo simulations using combined quantum and molecular mechanical potentials, J. Phys. Chem., 96 (1992) 537–540.

    Google Scholar 

  34. 34.

    Gao, J. and Xia, X., A priori evaluation of aqueous polarization effects through Monte Carlo QM/MM simulations, Science, 258 (1992) 631–635.

    Google Scholar 

  35. 35.

    Gao, J. and Pavelites, J.J., Aqueous basicity of the carboxylate lone pairs and the C-O barrier in acetic acids: A combined quantum and statistical mechanical study, J. Am. Chem. Soc., 114 (1992) 1912–1914.

    Google Scholar 

  36. 36.

    Gao, J., Hybrid quantum and molecular mechanical simulations: An alternative avenue to solvent effects in organic chemistry, Acc. Chem. Res., 27 (1993) 298–305.

    Google Scholar 

  37. 37.

    Gao, J., Luque, F.J. and Orozco, M., Induced dipole moments and atomic charges based on average electrostatic potentials in aqueous solution, J. Chem. Phys., 98 (1993) 2975–2982.

    Google Scholar 

  38. 38.

    Gao, J., Potential of mean force for the isomerization of DMF in aqueous solution: A Monte Carlo QM/MM simulation study, J. Am. Chem. Soc., 115 (1993) 2930–2935.

    Google Scholar 

  39. 39.

    Gao, J. and Xia, X., A two-dimensional energy surface for a type II S N 2 reaction in aqueous solution, J. Am. Chem. Soc., 115 (1993) 9667–9675.

    Google Scholar 

  40. 40.

    Stanton, R.V., Hartsough, D.S. and Merz, Jr., K.M., Calculation of solvation free energies using a density functional molecular dynamics coupled potential, J. Phys. Chem., 97 (1993) 11868–11870.

    Google Scholar 

  41. 41.

    Gao, J., Combined QM/MM simulation study of the Claisen rearrangement of allyl vinyl ether in aqueous solution, J. Am. Chem. Soc., 116 (1994) 1563–1564.

    Google Scholar 

  42. 42.

    Liu, H. and Shi, Y., Combined molecular mechanical and quantum mechanical potential study of a nucleophilic addition reaction in solution, J. Comput. Chem., 15 (1994) 1311–1318.

    Google Scholar 

  43. 43.

    Liu, H., Müller-Plathe, F. and Van Gunsteren, W.F., A molecular dynamics simulation study with a combined quantum mechanical and molecular mechanical potential energy function: Solvation effects on the conformational equilibrium of dimethoxy ethane, J. Chem. Phys., 102 (1995) 1722–1730.

    Google Scholar 

  44. 44.

    Hartsough, D.S. and Merz, Jr., K.M., Potential of mean force calculations on the S N 1 fragmentation of tert-butyl chloride, J. Phys. Chem., 99 (1995) 384–390.

    Google Scholar 

  45. 45.

    Stanton, R.V., Little, L.R. and Merz, Jr., K.M., Quantum free energy perturbation study within a PM3/MM coupled potential, J. Phys. Chem., 99 (1995) 483–486.

    Google Scholar 

  46. 46.

    Thompson, M.A., Hybrid quantum mechanical/molecular mechanical force field development for large flexible molecules: A molecular dynamics study of 18-crown-6, J. Phys. Chem., 99 (1995) 4794–4804.

    Google Scholar 

  47. 47.

    Bash, P.A., Field, M.J., Davenport, R.C., Petsko, G.A., Ringe, D. and Karplus, M., Structure of the triosephosphate isomerase phosphoglycolohydroxamate complex: An analog of the intermediate on the reaction pathway, Biochemistry, 30 (1991) 5821–5826.

    Google Scholar 

  48. 48.

    Waszkowycz, B., Hillier, I.H., Gensmantel, N. and Payling, D.W., Combined quantum mechanical- molecular mechanical study of catalysis by the enzyme phospholipase A2: An investigation of the potential-energy surface for amide hydrolysis, J. Chem. Soc., Perkin Trans. 2 (1991) 225–2032.

    Google Scholar 

  49. 49.

    Vasilyev, V.V., Tetrahedral intermediate formation in the acylation step of acetylcholinesterases: A combined quantum chemical and molecular mechanical model, J. Mol. Struct. (THEOCHEM), 304 (1994) 129–141.

    Google Scholar 

  50. 50.

    Elcock, A.H., Lyne, P.D., Mulholland, A.J., Nandra, A. and Richards, W.G., Combined quantum and molecular mechanical study of DNA cross-linking by nitrous acid, J. Am. Chem. Soc., 117 (1995) 4706–4707.

    Google Scholar 

  51. 51.

    Hartsough, D.S. and Merz, Jr., K.M., Dynamic force field models: Molecular dynamics simulations of human carbonic anhydrase II using a quantum mechanical/molecular mechanical coupled potential, J. Phys. Chem., 99 (1995) 11266–11275.

    Google Scholar 

  52. 52.

    Born, M. and Von Karman, T., Ñber Schwingungen in Raumgittern, Physik. Z., 13 (1912) 297–309.

    Google Scholar 

  53. 53.

    Brooks, III, C.L. and Karplus, M., Deformable stochastic boundaries in molecular dynamics, J. Chem. Phys., 79 (1983) 6312–6325.

    Google Scholar 

  54. 54.

    Brünger, A.T., Huber, R. and Karplus, M., Trysinogen-trypsin transition: A molecular dynamics study of induced conformational change in the activation domain, Biochemistry, 26 (1987) 5153–5164.

    Google Scholar 

  55. 55.

    Davis, T.D., Maggiora, G.M. and Christoffersen, R.E., Ab initio calculations on large molecules using molecular fragments: Unrestricted Hartree Fock calculations on low lying states of formaldehyde and its radical ions, J. Am. Chem. Soc., 96 (1974) 7878–7887.

    Google Scholar 

  56. 56.

    Clementi, E., Computational aspects for large chemical systems: Lecture notes in chemistry, Springer, New York, 1980.

    Google Scholar 

  57. 57.

    Maseras, F. and Morokuma, K., IMOMM: A new integrated ab initio + molecular mechanics geometry optimisation scheme of equilibrium structures and transition states, J. Comput. Chem., 16 (1995) 1170–1179.

    Google Scholar 

  58. 58.

    Bakowies, D. and Thiel, W., Semiempirical treatment of electrostatic potentials and partial charges in combined quantum mechanical, molecular mechanical approaches, J. Comput. Chem., 17 (1996) 87–108.

    Google Scholar 

  59. 59.

    Thole, B.T., Molecular polarizabilities calculated with a modified dipole interaction, Chem. Phys., 59 (1981) 341–350.

    Google Scholar 

  60. 60.

    Monard, G., Loos, M., Théry, V., Baka, K. and Rivail, J.-L., Hybrid classical quantum force field for modeling very large molecules, Int. J. Quant. Chem. 58 (1996) 153–159.

    Google Scholar 

  61. 61.

    Rappé, A.K., Caswit, C.J., Colwell, K.S., Goddard, III, W.A. and Skiff, W.M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114 (1992) 10024–10035.

    Google Scholar 

  62. 62.

    Luzhkov, V. and Warshel, A., Microscopic calculations of solvent effects on absorption spectra of conjugated molecules, J. Am. Chem. Soc., 113 (1991) 4491–4499.

    Google Scholar 

  63. 63.

    Luzhkov, V. and Warshel, A., Microscopic models for quantum mechanical calculations of chemical processes in solution: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies, J. Comput. Chem., 13 (1992) 199–213.

    Google Scholar 

  64. 64.

    Vesely, F.J., N-particle dynamics of polarizable Stockmayer-type molecules, J. Comput. Phys., 24 (1977) 361–371.

    Google Scholar 

  65. 65.

    Ahlstrom, P., WallQvist, A., Engstrom, S. and Jonsson, B., A molecular dynamics study of polarizable water, Mol. Phys., 68 (1989) 563–581.

    Google Scholar 

  66. 66.

    Dang, L.X., Rice, J.E., Caldwell, J. and Kollman, P.A., Ion solvation in polarizable water: Molecular dynamics simulation, J. Am. Chem. Soc., 113 (1991) 2481–2486.

    Google Scholar 

  67. 67.

    Thompson, M.A., QM/MMpol: A consistent model for solute/solvent polarization: Application to the aqueous solvation and spectroscopy of formaldehyd, acetaldehyd and acetone, J. Phys. Chem., 100 (1996) 14492–14507.

    Google Scholar 

  68. 68.

    Gasteiger, J. and Marsili, M., Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges, Tetrahedron, 36 (1990) 3219–3288.

    Google Scholar 

  69. 69.

    (a) Abraham, R.J. and Hudson, B., Charge calculations in molecular mechanics III: Amino acids and peptides, J. Comput. Chem., 6 (1985) 173–181. (b) Abraham, R.J. and Smith, P.E., Charge calculations in molecular mechanics IV: A general method for conjugated systems, J. Comput. Chem., 9 (1987) 288–297.

    Google Scholar 

  70. 70.

    Coulson, C.A. and Longuet-Higgins, H.C., The electronic structure of conjugated systems: 1. General theory, Proc. Roy. Soc., A191 (1947) 39–60.

    Google Scholar 

  71. 71.

    Mulliken, R.S., Electronic population analysis on LCAO-MO molecular wave functions, I, J. Chem. Phys., 23 (1955) 1833–1840.

    Google Scholar 

  72. 72.

    Williams, D.E., Net atomic charges and multipole models for the ab initio molecular electric potential, In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in computational chemistry, Vol. 2, VCH, Weinheim, 1991, pp. 219–271.

    Google Scholar 

  73. 73.

    Storer, J.W., Giesen, D.J., Cramer, C.J. and Truhlar, D.G., Class IV carge models: A new semiempirical approach in quantum chemistry, J. Comput.-Aided Mol. Design, 9 (1995) 87–110.

    Google Scholar 

  74. 74.

    Rappé, A.K. and Goddard, III, W.A., Charge equilibration for molecular dynamics simulation, J. Phys. Chem., 95 (1991) 3358–3363.

    Google Scholar 

  75. 75.

    Chirlian, L.E. and Francl, M.M., Atomic charges derived from electrostatic potentials: A detailed study, J. Comput. Chem., 8 (1987) 894–905.

    Google Scholar 

  76. 76.

    Breneman, C.M. and Wiberg, K.B., Determining atom-centred monopoles from molecular electrostatic potentials: The need for high sampling density in formamide conformational analysis, J. Comput. Chem., 11 (1990) 361–373.

    Google Scholar 

  77. 77.

    Besler, B.H., Merz, Jr., K.M. and Kollman, P.A., Atomic charges derived from semiempirical methods, J. Comp. Chem., 11 (1990) 431–439.

    Google Scholar 

  78. 78.

    Spackman, M.A., Potential derived charges using a geodesic point selection scheme, J. Comput. Chem., 17 (1996) 1–18.

    Google Scholar 

  79. 79.

    Ferenczy, G.G., Reynolds, C.A. and Richards, W.G., Semiempirical AM1 electrostatic potentials and AM1 electrostatic potential derived charges: A comparison with ab initio values, J. Comput. Chem., 11 (1990) 159–169.

    Google Scholar 

  80. 80.

    Orozco, M. and Luque, F.J., On the Use of AM1 and MNDO wave functions to compute accurate electrostatic charges, J. Comput. Chem., 11 (1990) 909–923.

    Google Scholar 

  81. 81.

    Beck, B., Glen, R.C. and Clark, T., VESPA: A new, fast approach to electrostatic potential-derived atomic charges from semiempirical methods, J. Comput. Chem., 18 (1997) 744–756.

    Google Scholar 

  82. 82.

    Beck, B., Glen, R.C. and Clark, T., A detailed study of VESPA electrostatic potential-derived atomic charges, J. Mol. Model., 1 (1995) 176–187.

    Google Scholar 

  83. 83.

    Heiden, W., Goetze, T. and Brickmann, J., Fast generation of molecular surfaces from 3D data fields with enhanced ‘marching cube’ algorithm, J. Comput. Chem., 14 (1993) 246–250.

    Google Scholar 

  84. 84.

    Marsili, M., Computation of volumes and surface areas of organic compounds, In Jochum, C., Hicks, M.G. and Sunkel, J. (Eds.) Physical property prediction in organic chemistry, Springer Verlag, Berlin, 1988, pp. 249–254.

    Google Scholar 

  85. 85.

    Rauhut, G. and Clark, T., Multicenter point charge model for high-quality molecular electrostatic potentials from AM1 calculations, J. Comput. Chem., 14 (1993) 503–509.

    Google Scholar 

  86. 86.

    Beck, B., Rauhut, G. and Clark, T., The natural atomic orbital point charge model for PM3: Multipole moments and molecular electrostatic potentials, J. Comput. Chem., 15 (1994) 1064–1073.

    Google Scholar 

  87. 87.

    Bayly, C.I., Cieplak, P., Cornell, W.D. and Kollman, P.A., A well-behaved electrostatic potential based method using restraints for deriving atomic charges: The RESP method, J. Phys. Chem., 97 (1993) 10269–10280.

    Google Scholar 

  88. 88.

    Francl, M.M., Carey, C., Chirlian, L.E. and Gange, D.M., Charge fit to electrostatic potentials: II. Can atomic charges unambiguously fit to electrostatic potentials, J. Comput. Chem., 17 (1996) 367–383.

    Google Scholar 

  89. 89.

    Stone, A.J., Distributed multipole analysis, or how to describe a molecular charge distribution, Chem. Phys. Lett., 83 (1981) 233–239.

    Google Scholar 

  90. 90.

    Chipot, C., Ángyán, J., Ferenczy, G.G. and Scheraga, H.A., Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: A case study of saturated hydrocarbons, J. Phys. Chem., 97 (1993) 6628–6636.

    Google Scholar 

  91. 91.

    Sokalski, W.A. and Sawaryn, A., Correlated molecular and cumulative atomic multipole moments, J. Chem. Phys., 87 (1987) 526–534.

    Google Scholar 

  92. 92.

    Stogryn, D.E. and Stogryn, A.P., Molecular multipole moments, Mol. Phys., 11 (1966) 371–393.

    Google Scholar 

  93. 93.

    Stewart, J.J.P., MOPAC: A semiempirical molecular orbital program, J. Comput.-Aided Mol. Design, 4 (1990) 1–112.

    Google Scholar 

  94. 94.

    Buckingham, A.D., Molecular quadrupole moments, Quart. Rev., 13 (1959) 183–214.

    Google Scholar 

  95. 95.

    Perutz, M.F., Electrostatic effects in proteins, Science, 201 (1978) 1187–1191.

    Google Scholar 

  96. 96.

    Warwicker, J. and Watson, H.C., Calculation of the electric potential in the active site cleft due to a-helix dipoles, J. Mol. Biol., 157 (1982) 671–679.

    Google Scholar 

  97. 97.

    Warshel, A. and Russel, S.T., Calculations of electrostatic interactions in biochemical systems in solution, Q. Rev. Biophys., 17 (1984) 283–291.

    Google Scholar 

  98. 98.

    Giessner-Prettre, C. and Pullman, A., Molecular electrostatic potentials: Comparison of ab initio and CNDO results, Theor. Chim. Acta, 25 (1972) 83–89.

    Google Scholar 

  99. 99.

    Alhambra, C., Luque, F.J. and Orozco, M., Comparison of NDDO and quasi-ab initio approaches to compute semiempirical molecular electrostatic potentials, J. Comput. Chem., 15 (1994) 12–22.

    Google Scholar 

  100. 100.

    Luque, F.J., Illas, F. and Orozco, M., Comparative study of the molecular electrostatic potential obtained from different wavefunctions: Reliability of the semiempirical MNDO wavefunction, J. Comput. Chem., 11 (1990) 416–430.

    Google Scholar 

  101. 101.

    Luque, F.J. and Orozco, M., Reliability of the AM1 wavefunction to compute molecular electrostatic potentials, Chem. Phys. Lett., 168 (1990) 269–275.

    Google Scholar 

  102. 102.

    Alemán, C., Luque, F.J. and Orozco, M., Suitability of the PM3-derived molecular electrostatic potentials, J. Comput. Chem., 14 (1993) 799–808.

    Google Scholar 

  103. 103.

    Bharadwaj, R., Windemuth, A., Sridharan, S., Honig, B. and Nicholls, A., The fast multipole boundary element method for molecular electrostatics: An optimal approach for large systems, J. Comput. Chem., 16 (1995) 898–913.

    Google Scholar 

  104. 104.

    Gaussian 92, Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Replogle, E.S., Gomperts, R., Andres, J.L., Raghavachari, K., Binkley, J.S., Gonzales, C., Martin, R.L., Fox, D.J., Defrees, D.J.C., Baker, J., Stewart, J.J.P. and Pople, J.A., Gaussian Inc., Pittsburgh, PA, 1992.

    Google Scholar 

  105. 105.

    Ford, G.P. and Wang, B., New approach to the rapid semiempirical calculation of molecular electrostatic potentials based on the AM1 wave function: Comparison with ab initio HF 6–31G * results, J. Comput. Chem., 14 (1993) 1101–1111.

    Google Scholar 

  106. 106.

    Nakajima, H., Takahashi, O. and Kikuchi, O., Rapid evaluation of molecular electrostatic potential maps for amino acids, peptides and proteins by empirical functions, J. Comput. Chem., 17 (1996) 790–805.

    Google Scholar 

  107. 107.

    Lyne, P.D., Mulholland, A.J. and Richards, W.G., Insights into chorismate mutase catalysis from a combined QM/MM simulation of the enzyme reaction, J. Am. Chem. Soc., 117 (1995) 11345–11350.

    Google Scholar 

  108. 108.

    Mulholland, A.J. and Karplus, M., Simulations of enzymic reactions, Biochem. Soc. Trans. 24 (1996) 247–254.

    Google Scholar 

  109. 109.

    Beck, B., Lanig, H., Glen, R.C. and Clark, T., J. Med. Chem. (submitted).

  110. 110.

    Alex, A. and Finn, P., Fourth World Congress of Theoretically Oriented Chemists - WATOC’ 96, Jerusalem, Israel, 1996.

  111. 111.

    Lanig, H., Beck, B. and Clark, T., Poster, MGMS Meeting, York, U.K, 1996.

    Google Scholar 

  112. 112.

    Jones, G., Willet, P. and Glen, R.C., Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation, J. Mol. Biol., 245 (1995) 43–53.

    Google Scholar 

  113. 113.

    Rauhut, G., Alex, A., Chandrasekhar, J., Steinke, T., Sauer, W., Beck, B., Hutter, M., Gedeck, P. and Clark, T., VAMP6.0, Oxford Molecular Ltd., Medawar Centre, Oxford Science Park, Sandford-on-Thames, Oxford OX4 4GA, U.K.

  114. 114.

    Weber, I.T., Steitz, T.A., Bubis, J. and Taylor, S.S., Predicted structures of cAMP binding domains of type I and type II regulatory subunits of cAMP-dependent protein kinase, Biochemistry, 26 (1987) 343–351.

    Google Scholar 

  115. 115.

    McKay, D.B. and Steitz, T.A., Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left handed B-DNA, Nature, 290 (1981) 744–749. 116. Weber, I.T., and Steitz, T.A., Structure of a complex between catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution, J. Mol. Biol., 198 (1987) 311–326.

    Google Scholar 

  116. 117.

    Stehle, T. and Schulz, G.E., Three-dimensional structure of the complex between guanylate kinase from yeast with its substrate GMP, J. Mol. Biol., 211 (1990) 249–254.

    Google Scholar 

  117. 118.

    Stehle, T. and Schulz, G.E., Refined structure of the complex between guanylate kinase and its substrate GMP, J. Mol. Biol., 224 (1992) 1127–1141.

    Google Scholar 

  118. 119.

    Mangani, S., Carloni, P. and Orioli, P., Crystal structure of the complex between carboxypeptidase A and the biproduct analog inhibitor L-benzylsuccinate at 2.0 Å resolution, J. Mol. Biol., 223 (1992) 573–578.

    Google Scholar 

  119. 120.

    Cappalonga, A.M., Alexander, R.S. and Christianson, D.W., Structural comparison of sulfodiimine inhibitors in their complexes with zinc enzymes, J. Mol. Biol., 267 (1992) 19192–19197.

    Google Scholar 

  120. 121.

    Kim, H. and Lipscomb, W.N., Comparison of the structures of three carboxypeptidase A-phosphonate complexes determined by X-ray crystallography, Biochemistry, 30 (1991) 8171–8180.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beck, B., Clark, T. Some biological applications of semiempirical MO theory. Perspectives in Drug Discovery and Design 9, 131–159 (1998). https://doi.org/10.1023/A:1027259921634

Download citation

Keywords

  • Polymer
  • Biological Application