EVA: a novel theoretical descriptor for QSAR studies

This is a preview of subscription content, access via your institution.


  1. 1.

    Hansch, C. and Fujilta, T., ρ-σ-π analysis: A method for the correlation of biological activity and chemical structure, J. Am. Chem. Soc., 86 (1964) 1616–1626.

    Google Scholar 

  2. 2.

    Wiese, M., In Kubinyi, H. (Ed.) 3D QSAR in drug design, ESCOM, Leiden, 1993.

    Google Scholar 

  3. 3.

    Cramer, R.D., Patterson, D.E. and Bunce, J.D. Comparative molecular field analysis (CoMFA): 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959–5967.

    Google Scholar 

  4. 4.

    Kim, K.H. and Martin, Y.C., Direct prediction of linear free-energy substituent effects from 3D structures using comparative molecular-field analysis: 1. Electronic effects of substituted benzoic-acids, J. Org. Chem., 56 (1991) 2723–2729.

    Google Scholar 

  5. 5.

    Klebe, G., Abraham, U. and Mietzner, T., Molecular similarity indexes in a comparative-analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, J. Med. Chem., 37 (1994) 4130–4146.

    Google Scholar 

  6. 6.

    Kellogg, G.E., Semus, S.F. and Abraham, D.J., HINT - A new method of empirical hydrophobic field calculation for CoMFA, J. Comput.-Aided Mol. Design, 5 (1991) 545–552.

    Google Scholar 

  7. 7.

    Good, A.C., The calculation of molecular similarity: Alternative formulas, data manipulation and graphical display, J. Mol. Graph., 10 (1992) 144–151.

    Google Scholar 

  8. 8.

    Good, A.C., Hodgkin, E.E. and Richards, W.G., The utilisation of Gaussian functions for the rapid evaluation of molecular similarity, J. Chem. Inf. Comput. Sci., 32 (1992) 188–191.

    Google Scholar 

  9. 9.

    Thorner, D.A., Wild, D.J., Willett, P. and Wright, P.M., Similarity searching in files of three-dimensional structures: Flexible field-based searching of MEP, J. Chem. Inf. Comput. Sci., 36 (1996) 900–908.

    Google Scholar 

  10. 10.

    Wagener, M., Sadowski, J. and Gasteiger, J., Autocorrelation of molecular surface properties for model-ing corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks, J. Am. Chem. Soc., 117 (1995) 7769–7775.

    Google Scholar 

  11. 11.

    Silverman, B.D. and Platt, D.E., Comparative molecular moment analysis (CoMMA): 3D QSAR without molecular superposition, J. Med. Chem., 39 (1996) 2129–2140.

    Google Scholar 

  12. 12.

    Clementi, S., Cruciani, G., Riganelli, D. and Valigi, R., In Dean, P.M., Jolles, G. and Newton, C.G. (Eds.) New perspectives in drug design, Academic Press, London, 1995, pp. 285–310.

    Google Scholar 

  13. 13.

    Ferguson, A.M. and Heritage, T.W., Shell Research Ltd. Internal Report, 1990 (not publicly available).

  14. 14.

    Herzberg, G., Molecular Spectra and Molecular Structure: II. Infrared and Raman Spectra Polyatomic Molecules, 8th Ed., D. Van Nostrrand Company Inc., New York, 1945.

    Google Scholar 

  15. 15.

    Ferguson, A.M., and Jonathan, P., Shell Research Ltd. Internal Report, 1990 (not publicly available).

  16. 16.

    Lindberg, W., Persson, J.-A. and Wolds, S., Partial least-squares method for spectrofluorimetric analysis of mixtures of humic acid and ligninsulfonate, Anal. Chem., 55 (1983) 643–648.

    Google Scholar 

  17. 17.

    Waszkowycz, B., Clark, D.E., Frenkel, D., Li, J., Murray, C.W., Robson, B. and Westhead, D.R., PROG-LIGAND - an approach to de Novo molecular design: 2. Design of novel molecules from molecular field analysis (MFA) models and pharmacophores, J. Med. Chem., 37 (1994) 3994–4002.

    Google Scholar 

  18. 18.

    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, Jr., S. and Weiner, P., A novel force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 106 (1984) 765–784.

    Google Scholar 

  19. 19.

    Ferguson, A.M., Heritage, T.W., Jonathan, P., Pack, S.E., Phillips, L., Rogan, J. and Snaith, P.J., EVA: A new theoretically based molecular descriptor for use in QSAR/QSPR analysis, J. Comput.-Aided Mol. Design, 11 (1997) 143–152.

    Google Scholar 

  20. 20.

    Cramer III, R.D., BC (DEF) Parameters: 1. The intrinsic dimensionality of intermolecular interactions in the liquid state, J. Am. Chem. Soc., 102 (1980) 1837–1849.

    Google Scholar 

  21. 21.

    Stewart, J.J.P., Optimisation of Parameters for Semiempirical Methods: 2. Applications, J. Comp. Chem., 10 (1989) 221–264.

    Google Scholar 

  22. 22.

    Stewart, J.J.P., MOPAC: A semiempirical molecular orbital program, J. Comput.-Aided Mol. Design, 4 (1990) 1–105.

    Google Scholar 

  23. 23.

    Turner, D.B., Willett, P., Ferguson, A.M. and Heritage, T.W., Evaluation of a novel infra-red range vibration-based descriptor (EVA) for QSAR studies: 1. General application, J. Comput.-Aided Mol. Design, 11 (1997) 409–422.

    Google Scholar 

  24. 24.

    Turner, D.B., An Evaluation of a novel molecular descriptor (EVA) for QSAR studies and the similarity searching of chemical structure databases, PhD. thesis, University of Sheffield, 1996.

  25. 25.

    Jonathan, P., McCarthy, W.V. and Roberts, A.M.I., Discriminant analysis with singular covariance matrices: A method incorporating crossvalidation and efficient randomized permutation tests, J. Chemometrics, 10 (1996) 189–214.

    Google Scholar 

  26. 26.

    Waller, C.L. and McKinney, J.D., Comparative molecular field analysis of polyhalogenated dibenzo-r-dioxins, dibenzofurans and biphenyls, J. Med. Chem., 35 (1992) 2660–3666.

    Google Scholar 

  27. 27.

    Carroll, F.I., Gao, Y.G., Rahman, M.A., Abraham, P., Parham, K., Lewin, A.H., Boja, J.W. and Kuhar, M.J., Synthesis, ligand-binding, QSAR, and CoMFA study of 3-b-(para-substituted phenyl)tropane-2-β-carboxylic acid methyl-esters, J. Med. Chem., 34 (1991) 2719–2725.

    Google Scholar 

  28. 28.

    Allen, M.S., Laloggia, A.J., Dorn, L.J., Martin, M.J., Costantin, G., Hagen, T.J., Koehler, K.F., Skolnick, P. and Cook, J.M., Predictive binding of β-carboline inverse agonists and antagonists via the CoMFA/GOLPE approach, J. Med. Chem., 35 (1992) 4001–4010.

    Google Scholar 

  29. 29.

    Greco, G., Novellino, E., Silipo, C. and Vittoria, A., Comparative molecular-field analysis on aset of muscarinic agonists, Quant. Struct.-Act. Relat., 10 (1991) 289–299.

    Google Scholar 

  30. 30.

    Cho, S. and Trophsha, A., Crossvalidated R 2 -guided region selection for comparative molecular field-analysis: A simple method to achieve consistent results, J. Med. Chem., 38 (1995)1060–1066.

    Google Scholar 

  31. 31.

    Turner, D.B., Willett, P., Ferguson, A.M. and Heritage, T.W., Evaluation of a novel infra-red range vibration-based descriptor (EVA) for QSAR studies: 2. Model validation, J. Med. Chem. (submitted).

  32. 32.

    Kroemer, R.T. and Hecht, P., Replacement of steric 6–12 potential-derived interaction energies by atom-based indicator variables in CoMFA leads to models of higher consistency, J. Comput.-Aided Mol. Design, 9 (1995) 205–212.

    Google Scholar 

  33. 33.

    Heritage, T.W., Shell Research Ltd. Internal Report, 1992 (not publicly available).

  34. 34.

    Wold, S., Johansson, E. and Cocchi, M., PLS - partial least squares to latent structures, In Kubinyi, H. (Ed.) 3D QSAR in drug design, ESCOM, Leiden, 1993, pp. 523–550.

    Google Scholar 

  35. 35.

    Mickelson, K.E., Forsthoefel, J. and Westphal, U., Steroid-protein interactions: Human corticosteroid binding globulin: Some physicochemical properties and binding specificity, Biochemistry, 20 (1981) 6211–6218.

    Google Scholar 

  36. 36.

    Ginn, C.M.R., Turner, D.B., Willett, P., Ferguson, A.M. and Heritage, T.W., Similarity searching in files of three-dimensional chemical structures: Evaluation of the EVA descriptor and combination of rank-ings using data fusion, J. Chem. Inf. Comput. Sci, 37 (1997) 23–37.

    Google Scholar 

  37. 37.

    Dunn, W.J., Hopfinger, A.J., Catana, C. and Duraiswami, C., Solution of the conformation and alignment tensors for the binding of trimethoprim and its analogs to dihydrofolate-reductase - 3D-quantitative structure-activity study using molecular-shape analysis, 3-way partial least-squares regression, and 3-way factor analysis, J. Med. Chem., 39 (1996) 4825–4832.

    Google Scholar 

Download references


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heritage, T.W., Ferguson, A.M., Turner, D.B. et al. EVA: a novel theoretical descriptor for QSAR studies. Perspectives in Drug Discovery and Design 9, 381–398 (1998). https://doi.org/10.1023/A:1027236711155

Download citation


  • Polymer
  • Theoretical Descriptor
  • QSAR Study