Calculation of structural similarity by the alignment of molecular electrostatic potentials

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Good, A.C. and Mason, J.S., Three-dimensional structure database searches, Rev. Comput. Chem., 7 (1995) 67–117.

    Google Scholar 

  2. 2.

    Barnard, J.M., Substructure searching methods: Old and new, J. Chem. Inf. Comput. Sci., 33 (1993) 532–538.

    Google Scholar 

  3. 3.

    Downs, G.M. and Willett, P., Similarity searching in databases of chemical structures, Rev. Comput. Chem., 7 (1995) 1–66.

    Google Scholar 

  4. 4.

    Sadowski, J. and Gasteiger, J., From atoms and bonds to three-dimensional atomic coordinates: Automatic model builders, Chem. Rev., 93 (1993) 2567–2581.

    Google Scholar 

  5. 5.

    Martin, Y.C. and Willett, P. (Eds.), Designing bioactive molecules: Three-dimensional techniques and applications (in press).

  6. 6.

    Pepperrell, C.A., Willett, P. and Taylor, R., Implementation and use of an atom-mapping procedure for similarity searching in databases of 3D chemical structures, Tetrahedron Comput. Methodol., 3 (1990) 575–593.

    Google Scholar 

  7. 7.

    Perry, N.C. and van Geerestein, V.J., Database searching on the basis of three-dimensional molecular similarity using the SPERM program, J. Chem. Inf. Comput. Sci., 32 (1992) 607–616.

    Google Scholar 

  8. 8.

    Fisanick, W., Cross, K.P. and Rusinko, A., Similarity searching of CAS Registry substances: 1. Global molecular property and generic atom triangle geometric searching, J. Chem. Inf. Comput. Sci., 32 (1992) 664–674.

    Google Scholar 

  9. 9.

    Bemis, G.W. and Kuntz, I.D., A fast and efficient method for 2D and 3D molecular shape description, J. Comput.-Aided Mol. Design, 6 (1992) 607–628.

    Google Scholar 

  10. 10.

    Nilakantan, R., Bauman, N. and Venkataraghavan, R., A new method for rapid characterisation of molecular shape: Applications in drug design, J. Chem. Inf. Comput. Sci., 33 (1993) 79–85.

    Google Scholar 

  11. 11.

    Bath, P.A., Poirrette, A.R., Willett, P. and Allen, F.H., Similarity searching in files of three-dimensional chemical structures: Comparison of fragment-based measures of shape similarity, J. Chem. Inf. Comput. Sci., 34 (1994) 141–147.

    Google Scholar 

  12. 12.

    Good, A.C., Ewing, T.J.A., Gschwend, D.A. and Kuntz, I.D., New molecular shape descriptors: Application in database screening, J. Comput.-Aided Mol. Design, 9 (1995) 1–12.

    Google Scholar 

  13. 13.

    Burt, C., Richards, W.G. and Huxley, P., The application of molecular similarity calculations, J. Comput. Chem., 11 (1990) 1139–1146.

    Google Scholar 

  14. 14.

    Manaut, F., Sanz, F., Jose, J. and Milesi, M., Automatic search for maximum similarity between molecular electrostatic potential distributions, J. Comput.-Aided Mol. Design, 5 (1991) 371–380.

    Google Scholar 

  15. 15.

    Richard, A.M., Quantitative comparison of molecular electrostatic potentials for structure-activity studies, J. Comput. Chem., 12 (1991) 959–969.

    Google Scholar 

  16. 16.

    Good, A.C., Hodgkin, E.E. and Richards, W.G., The utilisation of Gaussian functions for the rapid evaluation of molecular similarity, J. Chem. Inf. Comput. Sci., 32 (1992) 188–191.

    Google Scholar 

  17. 17.

    Sanz, F., Manaut, F., Rodriguez, J., Lozoya, E. and Lopez-de-Brinas, E., MEPSIM: A computational package for analysis and comparison of molecular electrostatic potentials, J. Comput.-Aided Mol. Design, 7 (1993) 337–347.

    Google Scholar 

  18. 18.

    Petke, J.D., Cumulative and discrete similarity analysis of electrostatic potentials and fields, J. Comput. Chem., 14 (1993) 928–933.

    Google Scholar 

  19. 19.

    Good, A.C., Peterson, S.J. and Richards, W.G., QSARS from similarity matrices: Technique validation and application in the comparison of different similarity evaluation methods, J. Med. Chem., 36 (1993) 2929–2937.

    Google Scholar 

  20. 20.

    Burt, C., Molecular similarity calculations for the rational design of bioactive molecules, In Vinter, J.G. and Gardner, M. (Eds.) Molecular modelling and drug design, Macmillan, London, 1994, pp. 305–332.

    Google Scholar 

  21. 21.

    Johnson, M.A., Maggiora, G.M., Lajiness, M.S., Moon, J.B., Petke, J.D. and Rohrer, D.C., Rational use of chemical and sequence databases, In van de Waterbeemd, H. (Ed.) Advanced computer-assisted techniques in drug discovery, VCH, Weinheim, 1995, pp. 89–110.

    Google Scholar 

  22. 22.

    Wild, D.J. and Willett, P., Similarity searching in files of three-dimensional chemical structures: Alignment of molecular electrostatic potentials with a genetic algorithm, J. Chem. Inf. Comput. Sci., 36 (1996) 159–167.

    Google Scholar 

  23. 23.

    Thorner, D.A., Wild, D.J., Willett, P. and Wright, P.M., Similarity searching in files of three-dimensional chemical structures: Flexible field-based searching of molecular electrostatic potentials, J. Chem. Inf. Comput. Sci., 36 (1996) 900–908.

    Google Scholar 

  24. 24.

    Thorner, D.A., Willett, P., Wright, P.M. and Taylor, R., Similarity searching in files of three-dimensional chemical structures: Representation and searching of molecular electrostatic potentials using field-graphs, J. Comput.-Aid. Mol. Design, 11 (1997) 163–174.

    Google Scholar 

  25. 25.

    Bures, M.G., Martin, Y.C. and Willett, P., Searching techniques for databases of three-dimensional chemical structures, Topics Stereochem., 21 (1994) 467–511.

    Google Scholar 

  26. 26.

    Ho, C.M.W. and Marshall, G.R., FOUNDATION: A program to retrieve all possible structures containing a user-defined number of matching query elements from three-dimensional databases, J. Comput.-Aid. Mol. Design, 7 (1993) 3–22.

    Google Scholar 

  27. 27.

    Moon, J.B. and Howe, W.J., 3D database searching and de novo construction models in molecular design, Tetrahedron Comput. Methodol., 3 (1990) 697–711.

    Google Scholar 

  28. 28.

    Carbo, R., Leyda, L. and Arnau, M., How similar is a molecular to another? An electron density measure of similarity between two molecular structures, Int. J. Quant. Chem., 17 (1980) 1185–1189.

    Google Scholar 

  29. 29.

    Bron, C. and Kerbosch, J., Algorithm 457: Finding all cliques of an undirected graph, Comm. ACM, 16 (1973) 575–577.

    Google Scholar 

  30. 30.

    Brint, A.T. and Willett, P., Algorithms for the identification of three-dimensional maximal common substructures, J. Chem. Inf. Comput. Sci., 27 (1987) 152–158.

    Google Scholar 

  31. 31.

    CONCORD is distributed by the University of Texas at Austin and Tripos Inc., St Louis, MO, U.S.A.

  32. 32.

    Stewart, J.J.M., MOPAC: a semiempirical molecular orbital program, J. Comput.-Aided Mol. Design, 4 (1990) 1–105.

    Google Scholar 

  33. 33.

    Goldberg, D.E., Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wesley, New York, 1989.

    Google Scholar 

  34. 34.

    Michaelewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, 2nd Ed., Springer Verlag, New York, 1994.

    Google Scholar 

  35. 35.

    Willett, P., Genetic algorithms in molecular recognition and design, Trends Biotech., 13 (1995) 516–521.

    Google Scholar 

  36. 36.

    Clark, D.E. and Westhead, D.R., Evolutionary algorithms in computer-aided molecular design, J. Comput.-Aided Mol. Design, 10 (1996) 337–358.

    Google Scholar 

  37. 37.

    Payne, A.W.R. and Glen, R.C., Molecular recognition using a binary genetic search algorithm, J. Mol. Graph., 11 (1993) 74–91.

    Google Scholar 

  38. 38.

    Willett, P., Similarity searching and clustering algorithms for processing database of two-dimensional and three-dimensional chemical structures, In Dean, P.M. (Ed.), Molecular similarity in drug design, Chapman and Hall, Glasgow, 1994, pp. 110–137.

  39. 39.

    Johnson, M.A. and Maggiora, G.M. (Eds.), Concepts and Applications of Molecular Similarity, John Wiley, New York, 1990.

    Google Scholar 

  40. 40.

    Siegal, S., Nonparametric Statistics for the Behavioural Sciences, McGraw-Hill Kogakusha, Tokyo, 1956.

    Google Scholar 

  41. 41.

    Reynolds, C.A., Essex, J.W. and Richards, W.G., Atomic charges for variable molecular conformations, J. Am. Chem. Soc., 114 (1992) 9075–9079.

    Google Scholar 

  42. 42.

    Clark, D.E., Willett, P. and Kenny, P.W., Pharmacophoric pattern matching in files of three-dimensional chemical structures: Use of smoothed-bounded distance matrices for the representation and searching of conformationally-flexible molecules, J. Mol. Graph., 10 (1992) 194–204.

    Google Scholar 

  43. 43.

    Moock, T.E., Henry, D.R., Ozkabak, A.G. and Alamgir, M., Conformational searching in ISIS/3D databases, J. Chem. Inf. Comput. Sci., 34 (1991) 184–189.

    Google Scholar 

  44. 44.

    Hurst, T., Flexible 3D searching: The directed tweak technique, J. Chem. Inf. Comput. Sci., 34 (1994) 190–196.

    Google Scholar 

  45. 45.

    Milne, G.W.A., Nicklaus, M.C., Driscoll, J.S. and Wang, S., National Cancer Institute Drug Information System 3D Database, J. Chem. Inf. Comput. Sci., 34 (1994) 1219–1224.

    Google Scholar 

  46. 46.

    Smellie, A., Kahn, S.D. and Teig, S.L., Analysis of conformational coverage: 1. Validation and estimation of coverage, J. Chem. Inf. Comput. Sci., 35 (1995) 285–294.

    Google Scholar 

  47. 47.

    Smellie, A., Kahn, S.D. and Teig, S.L., Analysis of conformational coverage: 2. Applications of con-formational models, J. Chem. Inf. Comput. Sci., 35 (1995) 295–304.

    Google Scholar 

  48. 48.

    Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G., The development of Versions 3 and 4 of the Cambridge Structural Database System, J. Chem. Inf. Comput. Sci., 31 (1991) 187–204.

    Google Scholar 

  49. 49.

    Ghose, A.K., Jaeger, E.P., Kowalczyk, P.J., Peterson, M.L. and Treasurywala, A.M., Conformational searching methods for small molecules: 1. Study of the SYBYL search method, J. Comput. Chem., 14 (1993) 1050–1065.

    Google Scholar 

  50. 50.

    Pepperrell, C.A. and Willett, P., Techniques for the calculation of three-dimensional structural similarity using inter-atomic distances, J. Comput.-Aid. Mol. Design, 5 (1991) 455–474.

    Google Scholar 

  51. 51.

    Henry, D.R., Jurs, P.C. and Denny, W.A., Structure-antitumour activity relationships of 9-anilino-acridines, J. Med. Chem., 25 (1982) 899–908.

    Google Scholar 

  52. 52.

    Stuper, A.J. and Jurs, P.C., Structure-activity studies of barbiturates using pattern-recognition techniques, J. Pharm. Sci., 67 (1978) 745–751.

    Google Scholar 

  53. 53.

    Chastrette, M., Zakarya, D. and Elmouaffek, A., Structure-odor relations of the nitrobenzene musk family, Eur. J. Med. Chem., 21 (1996) 505–510.

    Google Scholar 

  54. 54.

    Yuta, K. and Jurs, P.C., Computer-assisted structure-activity studies of chemical carcinogens: Aromatic amines, J. Med. Chem., 24 (1981) 241–251.

    Google Scholar 

  55. 55.

    Stouch, T.R. and Jurs, P.C., Computer-aided studies of the structure-activity relationships between some steroids and their anti-inflammatory activity, J. Med. Chem., 29 (1986) 2125–2136.

    Google Scholar 

  56. 56.

    Rose, S.L. and Jurs, P.C., Computer-assisted studies of structure-activity relationships of N-nitroso compounds using pattern recognition, J. Med. Chem., 25 (1982) 769–776.

    Google Scholar 

  57. 57.

    Kearsley, S.K., Sallamack, S., Fluder, E.M., Andose, J.D., Mosley, R.T. and Sheridan, R.P., Chemical similarity using physicochemical property descriptors, J. Chem. Inf. Comput. Sci., 36 (1996) 118–127.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thorner, D.A., Wild, D.J., Willett, P. et al. Calculation of structural similarity by the alignment of molecular electrostatic potentials. Perspectives in Drug Discovery and Design 9, 301–320 (1998). https://doi.org/10.1023/A:1027228509338

Download citation

Keywords

  • Polymer
  • Electrostatic Potential
  • Molecular Electrostatic Potential