Topics in Catalysis

, Volume 11, Issue 1–4, pp 229–306 | Cite as

Structural aspects of chemisorption at Cu(110) revealed at the atomic level

  • A.F. Carley
  • P.R. Davies
  • R.V. Jones
  • K.R. Harikumar
  • G.U. Kulkarni
  • M.W. Roberts


We illustrate the impact that scanning tunnelling microscopy (STM) has made on our understanding of chemisorption and catalysis at metal surfaces at the atomic level by considering four examples where information from surface sensitive techniques was also available. The advantages of STM and the limitations of some of the other experimental methods are discussed. (1) Through a combination of STM and X-ray photoelectron spectroscopy (XPS) we have established that a number of distinct oxygen chemisorbed states can exist at a Cu(110) surface. These are metastable and temperature dependent. Furthermore, the presence of chemisorbed sulphur is shown to promote a specific oxygen state – isolated oxygen strings – which are likely to be more chemically reactive than the oxygen overlayer present at Cu(110). In this sense the sulphur is a structural promoter. (2) The oxidation of ammonia under ammonia-rich conditions results in the growth of imide (NH) strings at a Cu(110) surface and this has been followed quantitatively by STM. The reactive surface oxygen state participates in an oxydehydrogenation reaction generating NH-radical species which undergo surface diffusion and result in string growth. (3) Nitric oxide dissociates at Cu(110) to generate a two-phase system of chemisorbed nitrogen and oxygen adatoms. The oxygen is present in a well ordered (2 × 1) structure and the nitrogen in a (3 × 2) structure. The limitations of an earlier LEED study are discussed. (4) Structural aspects of chemisorbed sulphur generated by the dissociative chemisorption of hydrogen sulphide and methyl mercaptan are discussed. In the latter case carbon–sulphur bond cleavage results in the formation of a sulphide overlayer at 450 K with complete removal of carbon as desorbed hydrocarbons. Various sulphur structures have been delineated over a wide temperature range.

STM oxygen ammonia hydrogen sulphide nitric oxide methyl mercaptan copper 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Kishi and M.W. Roberts, J. Chem. Soc. Faraday Trans. 71 (1975) 1721.CrossRefGoogle Scholar
  2. [2]
    D.W. Johnson, M.H. Matloob and M.W. Roberts, J. Chem. Soc. Faraday Trans. 75 (1979) 2143.CrossRefGoogle Scholar
  3. [3]
    C.T. Au and M.W. Roberts, Chem. Phys. Lett. 74 (1980) 472; J. Chim. Phys. 78 (1981) 921; A.F. Carley, S. Rassias and M.W. Roberts, Surf. Sci. 135 (1983) 35.CrossRefGoogle Scholar
  4. [4]
    P.G. Blake, A.F. Carley and M.W. Roberts, Surf. Sci. 123 (1982) L733.CrossRefGoogle Scholar
  5. [5]
    A.F. Carley, P.R. Chalker and M.W. Roberts, Proc. Roy. Soc. London A 139 (1985) 167.Google Scholar
  6. [6]
    C.M. Quinn and M.W. Roberts, Trans. Faraday Soc. 60 (1964) 899; 61 (1965) 1775; M.W. Roberts and B.R. Wells, Discuss. Faraday Soc. 41 (1966) 162.CrossRefGoogle Scholar
  7. [7]
    C.S. McKee, L.V. Renny and M.W. Roberts, Surf. Sci. 75 (1978) 92.CrossRefGoogle Scholar
  8. [8]
    C.T. Au and M.W. Roberts, J. Chem. Soc. Faraday Trans. I 83 (1987) 2047.CrossRefGoogle Scholar
  9. [9]
    M.J. Braithwaite, R.W. Joyner and M.W. Roberts, Discuss. Faraday Soc. 60 (1975) 89.CrossRefGoogle Scholar
  10. [10]
    M.W. Roberts, Surf. Sci. 299/300 (1994) 769.CrossRefGoogle Scholar
  11. [11]
    A. Boronin, A. Pashusky and M.W. Roberts, Catal. Lett. 16 (1992) 245; P.R. Davies, M.W. Roberts, M. Shukla and D.J. Vincent, Surf. Sci. 325 (1995) 50; M. Neurock, R.A. van Santen, W. Biemolt and A.P.J. Jansen, J. Am. Chem. Soc. 116 (1994) 6860; X.C. Guo and R.J. Madix, Faraday Discuss. 105 (1996) 139.CrossRefGoogle Scholar
  12. [12]
    A.F. Carley, P.R. Davies, G.U. Kulkarni and M.W. Roberts, Catal. Lett. 58 (1999) 93.CrossRefGoogle Scholar
  13. [13]
    F. Besenbacher, I. Chorkendorff, B.S. Clausen, B. Hammer, A.M. Molenbroek, J.K. Nørskov and I. Stensgaard, Science 29 (1998) 1913.CrossRefGoogle Scholar
  14. [14]
    B. Afsin, P.R. Davies, A. Pashuski and M.W. Roberts, Surf. Sci. Lett. 259 (1991) L724; A.F. Carley, P.R. Davies and M.W. Roberts, Curr. Opin. Solid State Mater. Sci. 2 (1997) 525.CrossRefGoogle Scholar
  15. [15]
    A.F. Carley, P.R. Davies and M.W. Roberts, J. Chem. Soc. Chem. Commun. (1998) 1793.Google Scholar
  16. [16]
    C.J. Hirschmugel, K.M. Schindler, O. Schaff, V. Fernandez, A. Theobald, P. Hofmann, A. Bradshaw, R. Davis, N.A. Booth, D.P. Woodruff and V. Fritzsche, Surf. Sci. 352 (1996) 232.CrossRefGoogle Scholar
  17. [17]
    A.F. Carley, P.R. Davies, R.V. Jones, K.R. Harikumar, G.U. Kulkarni and M.W. Roberts, Surf. Sci., in press.Google Scholar
  18. [18]
    C.T. Au and M.W. Roberts, unpublished.Google Scholar
  19. [19]
    M. Kostelitz and J. Oudar, Surf. Sci. 27 (1971) 176.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A.F. Carley
    • 1
  • P.R. Davies
    • 1
  • R.V. Jones
    • 1
  • K.R. Harikumar
    • 1
  • G.U. Kulkarni
    • 1
  • M.W. Roberts
    • 1
  1. 1.Department of ChemistryCardiff UniversityCardiff CF10 3TBUK

Personalised recommendations