Molecular mechanics calculations on protein-ligand complexes

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Briggs, J.M., Marrone, T.J. and McCammon, J.A., Computational science new horizons and relevance to pharmaceutical design, Trends Cardiovasc. Med., 6 (1996) 198–204.

    Google Scholar 

  2. 2.

    Weber, I.T., and Harrison, R.W., Molecular mechanics calculations on HIV-1 protease with peptide substrates correlate with experimental data, Protein Eng., 9 (1996) 679–690.

    Google Scholar 

  3. 3.

    Xu, L.Z., Weber, I.T., Harrison, R.W., Gidh-Jain, M. and Pilkis, S.J., Sugar specificity of human β-cell glucokinase: Correlation of molecular models with kinetic measurements, Biochemistry, 34 (1995) 6083–6092.

    Google Scholar 

  4. 4.

    Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, L.J., deSolms, S.J., Gaffin, N., Ghosh, A.K., Giuliani, E.A, Graham, S.L., Guare, J.P., Hungate, R.W., Lyle, T.A., Sanders, W.M., Tucker, T.J., Wiggins, M., Wiscount, C.M., Woltersdorf, O.W., Young, S.D., Darke, P.L. and Zugay, J.A. A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38 (1995) 305–317.

    Google Scholar 

  5. 5.

    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc., 118 (1996) 3959–3969.

    Google Scholar 

  6. 6.

    Harrison, R.W., Stiffness and energy conservation in the molecular dynamics: An improved integrator, J. Comp. Chem., 14 (1993) 1112–1122.

    Google Scholar 

  7. 7.

    Kourinov, I. and Harrison, R.W., Prediction of novel serine proteinase inhibitors, Nature Struc. Biol., 1 (1994) 735–743.

    Google Scholar 

  8. 8.

    Harrison, R.W., and Weber, I.T., Molecular dynamics simulation of HIV-1 protease with peptide substrate, Protein Eng., 7 (1994) 1353–1363.

    Google Scholar 

  9. 9.

    Harrison, R.W., Chatterjee, D. and Weber, I.T. Analysis of six protein structures predicted by comparative modeling techniques, Proteins: Struct. Funct. Genet., 23 (1995) 463–471.

    Google Scholar 

  10. 10.

    Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., An all atom force field for simulations of proteins and nucleic acids, J. Comput. Chem., 7 (1986) 230–252.

    Google Scholar 

  11. 11.

    Allinger, N.L., Yuh, Y.H. and Lii, J.-H., Molecular mechanics: The MM3 force field for hydrocarbons, J. Am. Chem. Soc., 111 (1989) 8551–8565.

    Google Scholar 

  12. 12.

    Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., III, and Skiff, W.M., UFF: A full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114 (1992) 10024–10035.

    Google Scholar 

  13. 13.

    Schreiber, H. and Steinhauser, O., Cutoff size does strongly influence molecular dynamics results on solvated polypeptides, Biochemistry, 31 (1992) 5856–5860.

    Google Scholar 

  14. 14.

    Greengard, L. and Rokhlin, V., A fast algorithm for particle simulations, J. Comp. Phys., 73 (1987) 325–348.

    Google Scholar 

  15. 15.

    Harrison, R.W., Kourinov, I.V. and Andrews, L.C. The Fourier Green's function and the rapid evaluation of molecular potentials, Protein Eng., 7 (1994) 359–369.

    Google Scholar 

  16. 16.

    Zeng, C.B., Aleshin, A.E., Hardie, J.B., Harrison, R.W. and Fromm, H.J., ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis, Biochemistry, 35 (1996) 13157–13164.

    Google Scholar 

  17. 17.

    Wlodawer, A., Nachman, J., Gilliland, G.L., Gallagher, W. and Woodward, C., Structure of form III crystals of bovine pancreatic trypsin inhibitor, J. Mol. Biol., 198 (1987) 469–480.

    Google Scholar 

  18. 18.

    Zegers, I., Maes, D., Dao-Thi, M.-H., Poortmans, F., Palmer, R. and Wyns, L. The structures of RNase A complexed with 3′CMP and d(CpA): Active site conformation and conserved water molecules, Protein Science, 3 (1994) 2322–2339.

    Google Scholar 

  19. 19.

    Fersht, A., Enzyme structure and mechanism, W.H. Freeman and Company, New York, 1985.

    Google Scholar 

  20. 20.

    Darke, P.L., Nutt, R.F., Brady, S.F., Garsky, V.M., Ciccarone, T.M., Leu, C.T., Lumma, P.K., Freidinger, R.M., Vebal, D.F. and Sigal, I.S., HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins, Biochem. Biophys. Res. Commun., 156 (1988) 297–303.

    Google Scholar 

  21. 21.

    Polgar, L., Szeltner, Z. and Boros, I., Substrate-dependent mechanisms in the catalysis of human immunodeficiency virus protease, Biochemistry, 33 (1994) 9351–9357.

    Google Scholar 

  22. 22.

    Hyland, L.J., Tomaszek, T.A. and Meek, T.D., Human immunodeficiency virus-1 protease: 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanisms, Biochemistry, 30 (1991) 8454–8463.

    Google Scholar 

  23. 23.

    Oprea, T.I., Waller, C.L. and Marshall, G.R., Three-dimensional quantitative structure-activity relation-ship of human immunodeficiency virus (I) protease inhibitors: 2. Predictive power using limited exploration of alternate binding modes, J. Med. Chem., 37 (1994) 2206–2215.

    Google Scholar 

  24. 24.

    Beveridge, D.L. and DiCapua, F.M., Free energy via molecular simulation: applications to chemical and biomolecular systems, Ann. Rev. Biophys. Biophys. Chem., 18 (1989) 431–492.

    Google Scholar 

  25. 25.

    Goldenfeld, N., Lectures on phase transitions and the renormalization group, Vol. 85, Frontiers in Physics, Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  26. 26.

    Reed, C., Fu, Z.-Q., Wu, J., Xue, Y.-N., Harrison, R.W., Chen, M.-J. and Weber, I.T. Crystal structure of TNF- α mutant R31D with greater affinity for receptor R1 compared to R2, Protein Eng. 10 (1997) 101–107.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, I.T., Harrison, R.W. Molecular mechanics calculations on protein-ligand complexes. Perspectives in Drug Discovery and Design 9, 115–127 (1998). https://doi.org/10.1023/A:1027207904795

Download citation

Keywords

  • Polymer
  • Molecular Mechanic
  • Mechanic Calculation
  • Molecular Mechanic Calculation