Rapid estimation of relative binding affinities of enzyme inhibitors

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Appelt, K., Bacquet, R.J., Bartlett, C.A, Booth, C.L., Freer, S.T., Fuhry, M.A.M., Gehring, M.R., Hermann, S.M., Howland, E.F., Janson, C.A., Jones, T.R., Kan, C., Kathardekar, V., Lewis, K.K., Marzoni, G.P., Matthews, D.A., Mohr, C.W.M.E., Morse, C.A., Oatley, S.J., Ogden, R.O., Reddy, M.R., Reich, S.H., Schoettlin, W.S., Smith, W.W., Varney, M.D., Villafranca, J.E., Ward, R.W., Webber, S., Webber, S.E., Welsh, K.M. and White, J., Design of enzyme inhibitors using iterative protein crystallographic analysis, J. Med. Chem., 34 (1991) 1925–1934.

    Google Scholar 

  2. 2.

    Montgomery, J.A., Niwas, S., Rose, J.D., Secrist, J.A., Sudhakar Babu, Y., Bugg, C.E., Erion, M.E., Guida, W.C. and Ealick, S.E., Structure based design of inhibitors of purine nucleoside phosphorylase. 1.9-(arylmethyl) derivatives of 9-deazaguanine, J. Med. Chem., 36 (1993) 55–69.

    Google Scholar 

  3. 3.

    Beveridge, D.L. and DiCapua, F.M., Free energy via molecular simulation, Ann. Rev. Biophys. Biophys. Chem., 18 (1989) 431–492.

    Google Scholar 

  4. 4.

    McCammon, J.A., Free energy from simulation, Current Opinion in Structural Biology, 1 (1991) 196–200.

    Google Scholar 

  5. 5.

    Merz, K.M., and Kollman, P.A., Free energy pertubation simulation of the inhibition of thermolysin: prediction of the free energy of binding of a new inhibitor, J. Am. Chem. Soc., 111 (1989) 5649–5658.

    Google Scholar 

  6. 6.

    Rami Reddy, M., Viswanadhan, V.N. and Weinstein, J.N., Relative free energy differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: A thermodynamic cycle perturbation approach, Proc. Natl. Acad. Sci. USA, 88 (1991) 10287–10291.

    Google Scholar 

  7. 7.

    Ferguson, D.M., Radmer, R.J. and Kollman, P.A., Determination of the relative binding free energies of peptide inhibitors to the HIV-1 protease, J. Med. Chem., 34 (1991) 2654–2659.

    Google Scholar 

  8. 8.

    Tropshaw, A.J. and Hermans, J., Application of free energy simulations to the binding of a transition state analogue inhibitor to HIV protease, Prot. Eng., 5 (1992) 29–33.

    Google Scholar 

  9. 9.

    Rao, B.G., Tilton, R.F. and Singh, U.C., Free energy perturbation studies on inhibitor binding to HIV-1 protease, J. Am. Chem. Soc., 114 (1992) 4447–4452.

    Google Scholar 

  10. 10.

    Rami Reddy, M., Varney, M.D., Kalish, V., Viswanadhan, V.N. and Appelt, K., Calculation of relative differences in the binding free energies of HIV-1 protease inhibitors: A thermodynamic cycle perturbation approach, J. Med. Chem., 114 (1994) 10117–10122.

    Google Scholar 

  11. 11.

    Bohacek, R.S. and McMartin, C., Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: Validation of a high-resolution graphical tool for drug design, J. Med. Chem., 35 (1992) 1671–1684.

    Google Scholar 

  12. 12.

    Kurtz, I.D., Meng, E.C. and Shoichet, B.K., Structure-based molecular design, Acc. Chem. Res., 27 (1994) 117–123.

    Google Scholar 

  13. 13.

    Goodford, P.J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, J. Med. Chem., 28 (1985) 849–857.

    Google Scholar 

  14. 14.

    Boehm, H.-J., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Comput.-Aided Mol. Design, 8 (1994) 243–256.

    Google Scholar 

  15. 15.

    Sansom, C.E., Wu, J. and Weber, I.T., Molecular mechanics analysis of inhibitor binding to HIV-1 protease, Protein Eng., 5 (1992) 659–667.

    Google Scholar 

  16. 16.

    Montgomery, J.A., Erion, M.D., Niwas, S., Rose, J.D., Secrist, J.A., Babu, S.Y., Bugg, C.E., Guida, W.C. and Ealick, S.E., Structure-based design of inhibitors of purine nucleoside phosphorylase. 1.9-(arylmethyl) derivatives of 9-deazguanine, J. Med. Chem., 36 (1993) 55–69.

    Google Scholar 

  17. 17.

    Erion, M.D., Montgomery, J.A., Niwas, S., Rose, J.D., Ananthan, S., Allen, M., Secrist, J.A., Babu, S.Y., Bugg, C.E., Guida, W.C. and Ealick, S.E., Structure-based design of inhibitors of purine nucleo-side phosphorylase. 3. 9-arylmenthyl derivatives of 9-deazaguanine substituted on the methylene-group, J. Med. Chem., 36 (1993) 3771–3783.

    Google Scholar 

  18. 18.

    Secrist, J.A.I., Niwas, S., Rose, J.D., Babu, S.Y., Bugg, C.E., Erion, M.D., Guida, W.C., Ealick, S.E. and Montgomery, J.A., Structure-based design of inhibitors of purine nucleoside phosphorylase. 2. 9-alicyclic and 9-heteroalicyclic derivatives of 9-deazaguanine, J. Med. Chem., 36 (1993) 1847–1854.

    Google Scholar 

  19. 19.

    Viswanadhan, V.N., Rami Redy, M, Wlodawer, A., Varney, M.D. and Weinstein, J.N., An approach to rapid estimation of relative binding affinities of enzyme inhibitors: application to peptidomimetic inhibitors of the human immunodeficiency virus type 1 protease, J. Med. Chem., 39 (1996) 705–712.

    Google Scholar 

  20. 20.

    Singh, U.C., Weiner, P.K., Caldwell, J.K. and Kollman, P.A., AMBER 3.3, University of California, San Francisco, CA, U.S.A., 1986.

    Google Scholar 

  21. 21.

    Cramer, R.D., Patterson, D.E. and Bunce, J.D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959–5967.

    Google Scholar 

  22. 22.

    Viswanadhan, V.N., Ghose, A.K. and Weinstein, J.N., Mapping the binding site of the nucleoside transporter protein: A 3D-QSAR study, Biochim. Biophys. Acta, 1039 (1991) 356–366.

    Google Scholar 

  23. 23.

    Debnath, A.K., Hansch, C., Kim, K.H. and Martin, Y.C., Mechanistic interpretation of the genotoxicity of nitrofurans (antibacterial agents) using quantitative structure-activity relationships and comparative molecular field analysis, J. Med. Chem., 36 (1993) 1007–1016.

    Google Scholar 

  24. 24.

    Depriest, S.A., Mayer, D., Naylor, C.B. and Marshall, G.R., 3D QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparison of CoMFA models based on deduced and experimentally determined active site geometries, J. Am. Chem. Soc., 115 (1993) 5372–5384.

    Google Scholar 

  25. 25.

    Kubinyi, H., 3D QSAR in drug design: Theory, methods and applications, ESCOM Science publishers B.V., Leiden, 1993.

    Google Scholar 

  26. 26.

    Martin, Y.C., A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists, J. Comput.-Aided Mol. Design, 7 (1993) 83–102.

    Google Scholar 

  27. 27.

    Waller, C., Oprea, T.I., Giolitti, A. and Marshall, G.R., Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors: 1. A study employing experimentally-determined alignment rules, J. Med. Chem., 36 (1993) 4152–4160.

    Google Scholar 

  28. 28.

    Oprea, T.I., Waller, C.L. and Marshall, G.R., 3D-QSAR of human immunodeficiency virus (I) protease inhibitors III: Interpretation of CoMFA results, Drug Design and Discovery, 12 (1994) 29–51.

    Google Scholar 

  29. 29.

    Holloway, K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, J.L., deSolms, J.S., Gaffin, N., Ghosh, A.K., Giuliani, E.A., Graham, S.L., Guare, J.P., Hungate, R.W., Lyle, T.A., Sanders, W.M., Tucker T.J., Wiggins, M., Wiscount, C.M., Woltersdorf, O.W., Young, S.D., Darke, P.L. and Zugay, J.A., A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38 (1995) 305–317.

    Google Scholar 

  30. 30.

    Halgren, T.A., MM force field, J. Comput. Chem., 17 (1996) 490.

    Google Scholar 

  31. 31.

    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc., 118 (1996) 3959–3969.

    Google Scholar 

  32. 32.

    Chirlian, L.E. and Francl, M.M., Atomic charges derived from electrostatic potentials: A detailed study, J. Comp. Chem., 8 (1987) 894–905.

    Google Scholar 

  33. 33.

    Frisch, M.J., Head-Gordon, M., Schelegel, H.B., Raghavachari, K., Binkley, J.S., Gonzales, C., Defrees, D.J., Fox, D.J., Whiteside, R.J., Seeger, R., Melius, C.F., Baker, J., Martin, R., Kahn, L.R., Stewart, J.J., Fluder, E.M., Topiel, S. and Pople, J.A., GAUSSIAN 88; Gaussian; Pittsburgh, PA, U.S.A., 1988.

    Google Scholar 

  34. 34.

    Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., The Missing Term in Effective Pair Potentials, J. Phys. Chem., 91 (1987) 6269–6271.

    Google Scholar 

  35. 35.

    Rami Reddy, M. and Berkowitz, M., Dielectric constant of SPC/E water, Chem. Phys. Lett., 155 (1989) 173–176.

    Google Scholar 

  36. 36.

    Rami Reddy, M., Viswanadhan, V.N. and Erion, M.D., Rapid estimation of relative binding affinities of enzyme inhibitors: Application to inhibitors of Fructose-1,6-bisphosphatase, J. Med. Chem. (to be submitted).

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reddy, M.R., Viswanadhan, V.N. & Erion, M. Rapid estimation of relative binding affinities of enzyme inhibitors. Perspectives in Drug Discovery and Design 9, 85–98 (1998). https://doi.org/10.1023/A:1027203803887

Download citation

Keywords

  • Polymer
  • Binding Affinity
  • Enzyme Inhibitor
  • Relative Binding
  • Rapid Estimation