Skip to main content
Log in

Compactification, Vacuum Energy and Quintessence

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the possibility that the vacuum energydensity of scalar and internal-space gauge fieldsarising from the process of dimensional reduction ofhigher dimensional gravity theories plays the role of quintessence. We show that, for themultidimensional Einstein-Yang-Mills system compactifiedon a R × S3 × Sdtopology, there are classically stable solutions suchthat the observed accelerated expansion of the Universe atpresent can be accounted for without upsetting structureformation scenarios or violating observational bounds onthe vacuum energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Perlmutter, S. J., et al. (The Supernova Cosmology Project) (1998). “Measurement of the Cosmological Parameter Ω and A from the First 7 Supernovae at z ≥ 0.35.” Preprint astro-ph/9608192; (1998). Nature 391, 51.

    Google Scholar 

  2. Riess, A. G., et al. (1998). “Observ ational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant.” Preprint astro-ph/9805201; Garnavich, P. M., et al. (1998). “Supernova Limits on the Cosmic Equation of State.” Preprint astro-ph/9806396.

  3. Bertolami, O. (1997). Class. Quantum Grav. 14, 2748.

    Google Scholar 

  4. Weinberg, S. (1989). Rev. Mod. Phys. 61, 1; (1996). “Theories of the Cosmological Constant.” Preprint astro-ph/9610044.

    Google Scholar 

  5. Bertolami, O., and Schiappa, R. (1999). Class. Quantum Grav. 16, 2545; Bento, M. C., and Bertolami, O. (1996). Gen. Rel. Grav. 28, 565.

    Google Scholar 

  6. Bertolami, O. (1986). Nuovo Cimento B 93, 36; (1986). Fortschr. Physik 34, 829.

    Google Scholar 

  7. Zlatev, I., and Wang, L., and Steinhardt, P. (1998). “Quintessence, Cosmic Coincidence, and the Cosmological Constant.” Preprint astro-ph/9807002.

  8. Caldwell, R. R., Dave, R., and Steinhardt, P. J. (1998). Phys. Rev. Lett. 80, 1582.

    Google Scholar 

  9. Peebles, P. J. E., and Ratra, B. (1988). Astrophys. J. Lett. 325, 117.

    Google Scholar 

  10. Ferreira, P. G., and Joyce, M. (1998). Phys. Rev. D 58, 023503.

    Google Scholar 

  11. Binétruy, P. (1998). “Models of Dynamical Supersymmetry Breaking and Quintessence.” Preprint hep-ph/9810553.

  12. Kim, J. E. (1998). “Axion and Almost Massless Quark as Ingredients of Quintessence.” Preprint hep-ph/9811509.

  13. Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. “Time-Dependent Vacuum Energy Induced by D-Particle Recoil.” Preprint hep-ph/9810086.

  14. Kolda, C., and Lyth, D. (1998). “Quintessential Difficulties.” Preprint hep-ph/9811375.

  15. Bertolami, O., and Martins, P. J. “Non-minimal coupling and Quintessence.” Lisbon Preprint DF/IST-2.99, NYU-TH/99/05/03.

  16. Kubyshin, Yu. A., Rubakov, V. A., and Tkachev, I. I. (1989). Int. J. Mod. Phys. A 4, 1409.

    Google Scholar 

  17. Bertolami, O., Kubyshin, Yu. A., and Mourão, J. M. (1992). Phys. Rev. D 45, 3405.

    Google Scholar 

  18. Bertolami, O., Fonseca, P. D., and Moniz, P. V. (1997). Phys. Rev. D 56, 4530.

    Google Scholar 

  19. Arkani-Hamed, N., Dimopoulos, S., and Dvali, G. “Phenomenology, Astrophysics and Cosmology of Theories with Sub-Millimeter Dimensions and TeV Scale Quantum Gravity.” Preprint hep-ph/9807344.

  20. Randjbar-Daemi, S., Salam, A., and Strathdee, J. (1983). Nucl. Phys. B 214, 491.

    Google Scholar 

  21. Appelquist, T., and Chodos, A. (1983). Phys. Rev. Lett. 50, 141; Candelas, P., and Weinberg, S. (1984). Nucl. Phys. B 237, 397.

    Google Scholar 

  22. Bertolami, O., Mourão, J. M., Picken, R. F., and Volobujev, I. P. (1991). Int. J. Mod. Phys. A 6 4149.

    Google Scholar 

  23. Spokoiny, B. (1993). Phys. Lett. B 315, 40.

    Google Scholar 

  24. Peebles, P. J. E., and Vilenkin, A. (1998). “Quintessential Inflation.” Preprint astroph/9810509.

  25. Bahcall, N. (1998). “Cosmology with Clusters of Galaxies.” Preprint astro-ph/9812076.

  26. Martel, H., Shapiro, P. R., and Weinberg, S. “Likely Values of the Cosmological Constant.” Preprint astro-ph/9701099.

  27. Fukugita, M., and Turner, E. L. (1991). Mon. Not. R. Astron. Soc. 253, 99.

    Google Scholar 

  28. Maoz, D., and Rix, H.-W. (1993). Astrophys. J. 416, 425.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bento, M.C., Bertolami, O. Compactification, Vacuum Energy and Quintessence. General Relativity and Gravitation 31, 1461–1472 (1999). https://doi.org/10.1023/A:1026774102600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026774102600

Navigation