Skip to main content
Log in

Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In the present work, the bacterial mannitol-1-phosphodehydrogenase(mtlD) gene was introduced into eggplant(Solanummelongena L.) by Agrobacteriumtumefaciens-mediated transformation. Several transformants weregenerated and the transgene integration was confirmed by PCR, dot blot andSouthern blot analysis. Transgenic lines of T0 and T1generations were examined for tolerance to NaCl-induced salt stress,polyethylene glycol-mediated drought and chilling stress under bothinvitro and in vivo growth conditions. Aconsiderable proportions of transgenic seeds germinated and seedlings grew wellon 200 mM salt-amended MS basal medium, whereas seeds ofuntransformed control plants failed to germinate. Further, leaf explants fromthe transgenics could grow and showed signs of shoot regeneration onsalt-amended MS regeneration medium, whereas wild type did not respond, and infact the explants showed necrosis and loss of chlorophyll after about one week.The transgenic leaves could also withstand desiccation, and transgenics couldgrow well under chilling stress, and hydroponic conditions with salt stress ascompared to wild type plants. Thus, the transgenic lines were found to betolerant against osmotic stress induced by salt, drought and chilling stress.The morphology of the transgenic plants was normal as controls, but thechlorophyll content was higher in some of the lines. These observations suggestthat mtlD gene can impart abiotic stress tolerance ineggplant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aono M., Kubo A., Saji H., Tanaka K. and Kondo N. 1993. Enhanced tolerance to photoxidative stress of transgenic Nicotiana tobaccum with high chloroplastic reductase activity. Plant Cell Physiol. 34: 129-135.

    Google Scholar 

  • Arnon D.I., McSwain B.D., Tsujimoto H.Y. and Wada K. 1974. Photochemical activity and components of membrane preparation from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochem. Biophys. Acta 357: 231-245.

    Google Scholar 

  • Bajaj S., Torgolli J., Liu L.-F., David Ho T.-H. and Wu R. 1999. Transgenic approaches to increase dehydration-stress tolerance in plants. Mol. Breed. 5: 493-503.

    Google Scholar 

  • Bailey J.E. 1991. Toward a science of metabolic engineering. Science 252: 1668-1675.

    Google Scholar 

  • Bohnert H.J. and Jensen R.G. 1996. Strategies for engineering water stress tolerance in plants. Trends Biotech. 14: 89-97.

    Google Scholar 

  • Bohnert H.J. and Shen B. 1999. Transformation and compatible solutes. Scien. Hort. 78: 237-260.

    Google Scholar 

  • Bray E.A. 1997. Plant responses to water deficit. Trends Plant Sci. 2: 48-54.

    Google Scholar 

  • Capell J., Escobar C., Lui H., Burtin D., Lepri O. and Christou P. 1998. Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Gene. 97: 246-254.

    Google Scholar 

  • Collonnier C., Fock I., Kasyap V., Rotino G.L., Daunay M.C., Lian Y. et al. 2001. Applications of biotechnology in eggplant (Solanum melongena L.). Plant Cell Tiss. Org. Cul. 65: 97-107.

    Google Scholar 

  • Doyle J.J. and Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

    Google Scholar 

  • Fillippone E. and Lurquin P.F. 1989. Stable transformation of eggplant (Solanum melongena L.) by cocultivation of tissues with Agrobacterium tumefaciens carrying a binary vector. Plant Cell Rep. 8: 370-373.

    Google Scholar 

  • Fukushima E., Arata Y., Endo T., Sonnewald U. and Sato F. 2001. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol. 42: 245-2249.

    Google Scholar 

  • Gisbert C., Rus A.M., Bolarin M.C., Lopez-Coronado J.M., Arrillaga I., Montesinos C. et al. 2000. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol. 123: 393-402.

    Google Scholar 

  • Grover A., Sahi C., Sanan N. and Grover A. 1999. Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci. 143: 101-111.

    Google Scholar 

  • Guri A. and Sink K.C. 1988. Agrobacterium transformation of eggplant. J. Plant Physiol. 133: 52-55.

    Google Scholar 

  • Hiei Y., Komari T. and Kubo T. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35: 205-218.

    Google Scholar 

  • Holmstrom K.O., Welin B., Mandal A., Kristiansdottir I., Teeri T.H., Trond L. et al. 1994. Production of the E.coli betaine aldehyde dehydrogenase., an enzyme required for the synthesis of the osmoprotectant glycine betaine in transgenic plants. Plant J. 6: 749-758.

    Google Scholar 

  • Hoshda H., Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Takabe T. et al. 2000. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol. Biol. 43: 103-111.

    Google Scholar 

  • Karakas B., Ozias-Akins P., Stushnoff C., Suefferheld M. and Rieger M. 1997. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ. 20: 609-616.

    Google Scholar 

  • Kavi Kishor P.B., Hong Z., Miao G., Hu C. and Verma D.P.S. 1995. Overexpression of Δ-1-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.

    Google Scholar 

  • Kumria R., Waie B. and Rajam M.V. 2001. Plant regeneration from transformed embryogenic callus of an elite indica rice via Agrobacterium. Plant Cell. Tiss. Org. Cul. 67: 63-71.

    Google Scholar 

  • McKersie B.D., Bowley S.R., Harjanto E. and Leprince O. 1996. Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase. Plant Physiol. 111: 1177-1181.

    Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol. Plant. 15: 473-497.

    Google Scholar 

  • Murata N., Ishizaki-Nishizawa O., Higashi S., Hayashi H., Tasaka Y. and Nishida I. 1992. Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710-713.

    Google Scholar 

  • Pharr D.M., Prata R.T.N., Jennings D.B., Williamsom J.D. and Zamski E. 1999. Regulation of mannitol dehydrogenase: relationship to plant growth and stress tolerance. HortSci. 34: 1027-1032.

    Google Scholar 

  • Pilon-Smits E.A.H., Ebskamp M.J.M., Paul M.J., Jeuken M.J.W., Weisbeek P.J. and Smeekens S.C.M. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107: 125-130.

    Google Scholar 

  • Prasad K.V.S.K., Sharmila P., Kumar P.A. and Pardha Saradhi P. 2000. Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed. 6: 489-499.

    Google Scholar 

  • Rajam M.V. 1997. Polyamines. In: Prasad M.N.V. (ed.), Plant Ecophysiology. John Wiley & Sons Inc., New York, pp. 343-374.

    Google Scholar 

  • Rajam M.V. 2000. Over-expression of polyamine biosynthesis genes confers abiotic stress tolerance in transgenic plants. In: XXIV All India Cell Biology Conference. Jawaharlal Nehru University, New Delhi, p. 88.

    Google Scholar 

  • Rajam M.V., Dagar S., Waie B., Yadav J.S., Kumar P.A., Shoeb F. et al. 1998. Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J. Biosci. 23: 473-482.

    Google Scholar 

  • Romero C., Belles J.M., Vaya J.L., Serrano R. and Culianez-Macia F.A. 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleotropic phenotypes include drought tolerance. Planta 201: 293-297.

    Google Scholar 

  • Rotino G.L. and Gleddie S. 1990. Transformation of eggplant (Solanum melongena L.) using a binary Agrobacterium tumefaciens vector. Plant Cell Rep. 9: 26-29.

    Google Scholar 

  • Sakamoto A. and Murata N. 2001. The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stressresistant transgenic plants. Plant Physiol.: 180-188.

  • Sharma P. and Rajam M.V. 1995. Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.). J. Exp. Bot. 46: 135-141.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Mannual. Cold Spring Harbor laboratory, Cold Spring Harbor, New York, USA.

  • Shen B., Jensen R.G. and Bohnert H.J. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113: 1177-1183.

    Google Scholar 

  • Sheveleva E., Chmara W., Bohnert H.J. and Jensen R.G. 1997. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum. Plant Physiol. 115: 1211-1219.

    Google Scholar 

  • Smart C.C. and Flores S. 1997. Overexpression of D-myo-inositol-3-phosphate synthase leads to elevated levels of inositol in Arabidopsis. Plant Mol. Biol. 33: 811-820.

    Google Scholar 

  • Tarczynski M.C., Jensen R.G. and Bohnert H.J. 1992. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc. Natl. Acad. Sci., USA. 89: 2600-2604.

    Google Scholar 

  • Tarczynski M.C., Jensen R.G. and Bohnert H.J. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508-510.

    Google Scholar 

  • Thomas J.C., Sepahi M., Arendall B. and Bohnert H.J. 1995. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ. 18: 801-806.

    Google Scholar 

  • Veena, Reddy V.S. and Sopory S.K. 1999. Glyoxylase I from Brassica juncea: molecular cloning, regulation and its overexpression confer tolerance in transgenic tobacco under stress. Plant J. 17: 385-395.

    Google Scholar 

  • Vernon D.M., Tarczynski M.C., Jensen R.G. and Bohnert H.J. 1993. Cyclitol production in transgenic tobacco. Plant J. 4: 199-205.

    Google Scholar 

  • Wallis J.G., Wang H. and Guerra D.J. 1997. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol. Biol. 35: 323-330.

    Google Scholar 

  • Xu D., Duan X., Wang B., Hong B., David Ho T.-H. and Wu R. 1996. Expression of a late embryogenesis abundant protein gene, HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.

    Google Scholar 

  • Zhu J.-K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66-71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.V. Rajam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhavathi, V., Yadav, J., Kumar, P. et al. Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Molecular Breeding 9, 137–147 (2002). https://doi.org/10.1023/A:1026765026493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026765026493

Navigation