Journal of Thermal Analysis and Calorimetry

, Volume 62, Issue 3, pp 665–679 | Cite as

Mixed Ligand Complexes of 5-arylazo-8-hydroxyquinoline and α-amino Acids with Co(II), Ni(II) and Cu(II)

  • A. S. A. Zidan
  • A. I. El-Said
  • M. S. El-Meligy
  • A. A. M. Aly
  • O. F. Mohammed

Abstract

Ten mixed ligand complexes of the type [M(X-QA)(aa)] and [Ni(X-QA)2(Haa)(H2O)],where X-HQA=5-arylazo-8-hydroxyquinoline derivatives, M=Co(II) orCu(II) and Haa=glycine (gly), alanine (ala) or methionine (met), have been prepared. The complexes have been characterized by elemental analysis, IR and electron spectra and thermal analysis. A tetrahedral structure has been proposed for the cobalt(II) and copper(II) complexes with bidentate coordination of amino acids. The nickel(II) complexes have been assigned an octahedral structure with the amino acids acting as monodentate ligands. The thermal behaviour of the complexes has been studied before and after γ-irradiation.

α-amino acids 5-arylazo-8-hydroxyquinoline characterization mixed ligand complexes thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A Kaiser, A. Longmann and P. Zeller, Experimentia, 120 (1964) 503.Google Scholar
  2. 2.
    C. E. Cerniglia, J. P. Freeman, W. Franklin and L. D. Pack, Carcinogenesis (London), 3 (1982) 1255.Google Scholar
  3. 3.
    S. Pati ‘The Chemistry of Hydrazo, Azo and Azoxy Groups’ Part 1, Wiley, New York 1975.Google Scholar
  4. 4.
    I. M. A. Awad, Phosphors, Sulfur and Silicon, 114 (1996) 17.Google Scholar
  5. 5.
    I. M. A. Awad, J. Chem. Tech. Biotechnol., 53 (1992) 277.Google Scholar
  6. 6.
    G. D. Tiwari and M. N. Mishra, J. Ind. Chem. Soc., 59 (1982) 362.Google Scholar
  7. 7.
    F. Banati and R. Ugo, J. Organometal. Chem., 10 (1967) 257.CrossRefGoogle Scholar
  8. 8.
    A. S. A. Zidan, Synth. React. Inorg. Met.-Org. Chem., 24 (1994) 277.Google Scholar
  9. 9.
    A. H. Osman, A. S. A. Zidan, A. I. El-Said and A. A. M. Aly, Transition Met. Chem., 18 (1993) 34.CrossRefGoogle Scholar
  10. 10.
    P. Indrasenan and M. Lakshmy, Indian J. Chem., 36A (1997) 998.Google Scholar
  11. 11.
    M. Gupta and M. N. Srivastava, Synth. React. Inorg. Met.-Org. Chem., 26 (1996) 305.Google Scholar
  12. 12.
    V. K. Saxena, M. Gupta and M. N. Srivastava, Synth. React. Inorg. Met.-Org. Chem., 26 (1996) 1661.Google Scholar
  13. 13.
    B. V. Murdula, G. Venkertanarayana and P. Lingaiah, Indian J. Chem., 28A (1989) 104.Google Scholar
  14. 14.
    M. Gupta and M. N. Srivastava, Polyhedron, 4 (1985) 475.CrossRefGoogle Scholar
  15. 15.
    B. T. Khan, K. Najmuddin, S. Shamsuddin and S. M. Zakeruddin, Inorg. Chim. Acta, 57 (1990) 175.CrossRefGoogle Scholar
  16. 16.
    A. B. Akbarov and A. S. Mutalibov, Deposited Doc., 14 (1984) 685.Google Scholar
  17. 17.
    H. Rau, Angew. Chem. Internat. Edit. Eng., 12 (1973) 224.CrossRefGoogle Scholar
  18. 18.
    I. M. A. Awad, A. A. M. Aly, A. A. Badel Hafez and Kh. M. Hassan, J. Chim. Chem. Soc., 36 (1989) 170.Google Scholar
  19. 19.
    A. W. Coats and J. P. Redfern, Nature, 20 (1964) 68.CrossRefGoogle Scholar
  20. 20.
    H. H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.CrossRefGoogle Scholar
  21. 21.
    R. M. Mahfowz, A. A. M. Aly, M. S. El-Meligy and A. S. A. Zidan, Isotopen praxis, 27 (1991) 245.Google Scholar
  22. 22.
    R. Malhotra, J. P. Singh, M. Dudeja and K. S. Dhindsa, J. Inorg. Biochem., 46 (1992) 119.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. S. A. Zidan
    • 1
  • A. I. El-Said
    • 1
  • M. S. El-Meligy
    • 1
  • A. A. M. Aly
    • 1
  • O. F. Mohammed
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations