Biologia Plantarum

, Volume 43, Issue 3, pp 381–386

Induction of Oxidative Stress and Antioxidant Activity by Hydrogen Peroxide Treatment in Tolerant and Susceptible Wheat Genotypes

Article

Abstract

We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes activity. H2O2 treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes, glutathione reductase and catalase. These effects increased with increasing H2O2 concentrations. However, no change was observed in the activity of superoxide dismutase and proline accumulation.

active oxygen species catalase chloroplast glutathione reductase lipid peroxidation nitrate reductase proline superoxide dismutase Triticum aestivum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, D.A., Buchanan, J.D.: Reactions of O2-, H2O2 and other oxidants with sulfhydryl enzymes.-Photochem. Photobiol. 28: 743-755, 1978.Google Scholar
  2. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris.-Plant Physiol. 29: 1-15, 1949.Google Scholar
  3. Bates, L.S., Waldren, R.P., Teare, I.K.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205-208, 1973.Google Scholar
  4. Davies, K.J.A.: Protein damage and degradation by oxygen radicals. I. General aspects.-J. biol. Chem. 262: 9895-9901, 1987.Google Scholar
  5. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 32: 93-101, 1981.Google Scholar
  6. Dhindsa, R.S.: Drought stress, enzymes of glutathione metabolism, oxidative injury and protein synthesis in Tortula ruralis.-Plant Physiol. 95: 648-651, 1991.Google Scholar
  7. Fridovich, I.: Biological effects of superoxide radical.-Arch. Biochem. Biophys. 247: 1-11, 1986.Google Scholar
  8. Guo, Z.F., Lu, S.Y., Li, B.S., Li, M.Q., Li, Y.C.: Response of rice seedlings in different drought tolerant cultivars to oxidative stress.-Acta bot. sin. 39: 748-752, 1997.Google Scholar
  9. Halliwell, B.: Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts.-Chem. Phys. Lipids 44: 327-340, 1987.Google Scholar
  10. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189-198, 1968Google Scholar
  11. Hiscox, J.D., Israelstam, G.F.: A method for extraction of chloroplast from leaf tissue without maceration.-Can. J. Bot. 57: 1332-1334, 1979.Google Scholar
  12. Imlay, J.A., Linn, S.: DNA damage and oxygen radical toxicity.-Science 240: 1302-1309, 1988.Google Scholar
  13. Kalir, A.: Changes in activity of malate-dehydrogenase, catalase, peroxidase and superoxide dismutase in leaves of Helimione portulacoides (L.) Allen exposed to high sodium chloride concentrations.-Ann. Bot. 47: 75-85, 1981.Google Scholar
  14. Klepper, L., Flesher, D., Hageman, R.H.: Generation of reduced-nicotinamide adenine dinucleotide for nitrate reduction in green leaves.-Plant Physiol. 48: 580-590, 1971.Google Scholar
  15. Liebler, D.C., Kling, D.S., Reed, D.J.: Antioxidant protection of phospholipid bilayers by α-tocopherol. Control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione.-J. biol. Chem. 261: 12114-12119, 1986.Google Scholar
  16. Lin, J.N., Kao, C.H.: Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves.-Bot. Bull. Acad. sin. 39: 161-165, 1998.Google Scholar
  17. Menconi, M., Sgherri, C.L.M., Pinzino, C., Navari-Izzo, F.: Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme.-J. exp. Bot. 46: 1123-1130, 1995.Google Scholar
  18. Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio, P.: Drought induces oxidative stress in pea plants.-Planta 194: 346-352, 1994.Google Scholar
  19. Morilla, C.A., Boyer, J.S., Hageman, R.H.: Nitrate reductase activity and polyribosomal content of corn (Zea mays L.) having low leaf water potential.-Plant Physiol. 51: 817-824, 1973.Google Scholar
  20. Mukherjee, S.P., Choudhuri, M.A.: Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings.-Physiol. Plant. 58: 166-170, 1983.Google Scholar
  21. Navari-Izzo, F., Pincino, C., Quartacci, M.F., Sgherri, C.L.M.: Intracellular membranes: kinetics of superoxide production and changes in thylakoids of resurrection plants upon dehydration and rehydration.-Proc. roy. Soc. Edinburgh 102B: 187-191, 1994.Google Scholar
  22. Olmos, E., Harnandez, J.A., Sevilla, F., Hellin, E.: Induction of several antioxidant enzymes in the selection of salt tolerant cell line of Pisum sativum.-J. Plant Physiol. 144: 594-598. 1994.Google Scholar
  23. Pastori, G.M., Trippi, V.S.: Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain.-Plant Cell Physiol. 33: 957-961, 1992.Google Scholar
  24. Patra, J., Panda, B.B.: A comparison of biochemical responses to oxidative metal stress in seedlings of barley (Hordeum vulgare L.).-Environ. Pollut. 101: 99-105, 1998.Google Scholar
  25. Prasad, T.K., Anderson, Marc D., Martin, B.A., Steward, C.R.: Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.-Plant Cell 6: 65-74, 1994.Google Scholar
  26. Quarrie, S.A.: Genotypic differences in leaf water potential, abscisic acid and proline concentration in spring wheat during drought stress.-Ann. Bot. 46: 383-394, 1980.Google Scholar
  27. Sairam, R.K.: Effect of moisture stress on physiological activities of two contrasting wheat genotypes.-Indian J. exp. Biol. 32: 594-597, 1994.Google Scholar
  28. Sairam, R.K., Deshmukh, P.S., Saxena, D.C.: Role of antioxidant systems in wheat genotypes tolerance to water stress.-Biol. Plant. 41: 384-394, 1998.Google Scholar
  29. Sairam, R.K., Deshmukh, P.S., Shukla, D.S.: Tolerance of drought and temperature stress in relation to increased antioxidant enzume activity in wheat.-J. Agron. Crop Sci. 178: 171-177, 1997.Google Scholar
  30. Sairam, R.K., Deshmukh, P.S., Shukla, D.S., Ram, S.: Metabolic activity and grain yield under moisture stress in wheat genotypes.-Indian J. Plant Physiol. 33: 226-231, 1990.Google Scholar
  31. Sairam, R.K., Dube, S.D.: Effect of moisture stress on proline accumulation in wheat in relation to drought tolerance.-Indian J. agr. Sci. 54: 146-147, 1984a.Google Scholar
  32. Sairam, R.K., Dube, S.D.: Effect of moisture stress on nitrate reductase activity in rice in relation to drought tolerance.-Indian J. Plant Physiol. 27: 264-270, 1984b.Google Scholar
  33. Sairam, R.K., Saxena, D.C.: Effect of elevated temperature on oxidative stress and antioxidant activity in wheat genotypes. Possible mechanism of heat stress tolerance.-Biol. Plant. 43: 245-251, 2000.Google Scholar
  34. Sairam, R.K., Shukla, D.S., Saxena, D.C.: Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes.-Biol. Plant. 40: 357-364, 1997/98.Google Scholar
  35. Singh, K.P., Singh, K.: Influence of simulated water stress on free proline accumulation in Triticum aestivum L.-Indian J. Plant Physiol. 26: 319-321, 1983.Google Scholar
  36. Singh, T.N., Aspinall, D., Paleg, L.G.: Proline accumulation and varietal adaptability to drought in barley: A potential metabolic measure of drought resistance.-Nature 236: 188-190, 1972.Google Scholar
  37. Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid).-Anal. Biochem. 175: 408-413, 1988.Google Scholar
  38. Teranishi, Y., Tanaka, A., Osumi, M., Fukui, S.: Catalase activity of hydrocarbon utilizing candida yeast.-Agr. biol. Chem. 38: 1213-1216, 1974.Google Scholar
  39. Upadhyaya, A., Davis, T.D., Larsen, M.H., Walser, R.H., Sankhla, N.: Uniconazole-induced thermotolerance in soybean seedling root tissue.-Physiol. Plant. 79: 78-84, 1990.Google Scholar
  40. Waldren, R.P., Teare, I.K.: Free proline accumulation in drought stressed plants under laboratory conditions.-Plant Soil 40: 689-692, 1974.Google Scholar
  41. Wise, R.R., Naylor, A.W.: Chilling enhanced peroxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure.-Plant Physiol. 83: 272-277, 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew Delhi -India e-mail

Personalised recommendations