Skip to main content
Log in

Optimal Noise Rejection in Structural Analysis by Means of Generalized Sampled-Data Hold Functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, a technique for optimal noise rejection, based on generalized sampled-data hold functions is applied to the control of civil engineering structures. The technique consists in suitably modulating the sampled outputs of the system under control by periodically varying functions in order to attenuate the effect of the disturbances on the system states to an acceptable level, by minimizing a quadratic cost function. This minimization is performed by feeding back the outputs of the system, which are assumed to be corrupted by measurement noise. Moreover, in the present paper, the robustness properties of the GSHF based optimal regulator is analyzed and guaranteed stability margins, expressed in terms of elementary cost and system matrices, are proposed for such a type of optimal regulators. The effectiveness of the method is demonstrated by various simulation results. The results of the paper can be used to assess the detrimental effect of noise on the closed-loop system and the tradeoff involved in assuring good sampled-data performance and sufficient robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.D. Panagiotopoulos, Optimal control of structures with convex and nonconvex energy densities and variational and hemivariational inequalities, Eng. Struct., vol. 6, pp. 12-18, 1984.

    Google Scholar 

  2. G.E. Stavroulakis, Optimal prestress of cracked unilateral structures: Finite element analysis of an optimal control problem for variational inequalities, Comp. Meth. Appl. Mech. Engineering, vol. 123, pp. 231-246, 1995.

    Google Scholar 

  3. J.M. Kelly, G. Leitmann and A.G. Soldatos, Robust control of base-isolated structures under earthquake excitation, J. Optim. Theory Appl., vol. 53, pp. 159-180, 1987.

    Google Scholar 

  4. E.C. Zacharenakis, On the disturbance attenuation and H -optimization in structural analysis, Z.A.M.M., vol. 77, pp. 189-195, 1997.

    Google Scholar 

  5. F. Jabbari, W.E. Schmitendorf and J.N. Yang, H control for seismic-excited buildings with acceleration feedback, J. Eng. Mechanics, vol. 121, pp. 994-1002, 1995.

    Google Scholar 

  6. E. Zacharenakis and K.G. Arvanitis, Minimum H4-norm regulation in structural analysis using multirate-output controllers, Z.A.M.M., vol. 80, pp. 363-376, 2000.

    Google Scholar 

  7. E.C. Zacharenakis and G.E. Stavroulakis, On the seismic disturbance rejection of structures, J. Global Optimiz., in press, 2000.

  8. A.B. Chammas and C.T. Leondes, On the design of linear time invariant systems by periodic output feedback, Parts I and II, Int. J. Control, vol. 27, pp. 885-903, 1978.

    Google Scholar 

  9. J.P. Greshak and G.C. Vergese, Periodically varying compensation of time-invariant systems, Syst. Control Lett., vol. 2, pp. 88-93, 1982.

    Google Scholar 

  10. P.P. Khargonekar, K. Poola and A. Tannenbaum, Robust control of linear time-invariant plants using periodic compensation, IEEE Trans. Autom. Control, vol. AC-30, pp. 1088-1096, 1985.

    Google Scholar 

  11. M. Araki and T. Hagiwara, Pole assignment by multirate sampled data output feedback, Int. J. Control, vol. 44, pp. 1661-1673, 1986.

    Google Scholar 

  12. P.T. Kabamba, Control of linear systems using generalized sampled-data hold functions, IEEE Trans. Autom. Control, vol. AC-32, pp. 772-783, 1987.

    Google Scholar 

  13. H.M. Al-Rahmani and G.F. Franklin, Linear periodic systems: Eigenvalue assignment using discrete periodic feedback, IEEE Trans. Autom. Control, vol. 34, pp. 99-103, 1989.

    Google Scholar 

  14. P.T. Kabamba and C. Yang, Simultaneous controller design for linear time-invariant systems, IEEE Trans. Autom. Control, vol. 36, pp. 106-111, 1991.

    Google Scholar 

  15. P.N. Paraskevopoulos and K.G. Arvanitis, Exact model matching of linear systems using generalized sampled-data hold functions, Automatica, vol. 30, pp. 503-506, 1994.

    Google Scholar 

  16. K.G. Arvanitis, Adaptive decoupling of linear systems using multirate generalized sampled-data hold functions, IMA J. Math. Control Inform., vol. 12, pp. 157-177, 1995.

    Google Scholar 

  17. K.G. Arvanitis, On the localization of intersample ripples of linear systems controlled by generalized sampled-data hold functions, Automatica, vol. 34, pp. 1021-1024, 1998.

    Google Scholar 

  18. K.G. Arvanitis, G. Kalogeropoulos and I.K. Kookos, Mixed H2/H4-norm regulation using th generalized sampled-data hold functions, Proc. 17th IASTED Intern. Conf. Modelling, Identif. Control, vol. 1, pp. 345-347, Grindelwald, Switzerland, February 18–20, 1998.

    Google Scholar 

  19. K.G. Arvanitis, An algorithm for adaptive pole placement control of linear systems based on generalized sampled-data hold functions, J. Franklin Inst., vol. 336, pp. 503-521, 1999.

    Google Scholar 

  20. K.G. Arvanitis, N. Sigrimis, I.K. Kookos and G. Kalogeropoulos, Model reference adaptive controller design for MIMO linear systems based on multirate generalized sampled-data hold functions, Systems Sci., vol. 25, pp. 5-36, 1999.

    Google Scholar 

  21. U. Shaked, Guaranteed stability margins for the discrete-time linear quadratic optimal regulator, IEEE Trans. Autom. Control, vol. AC-31, pp. 162-165, 1986.

    Google Scholar 

  22. K.G. Arvanitis, G. Kalogeropoulos and T.G. Koussiouris, Singular value properties of the discrete-time LQ optimal regulator in S.G. Tzafestas and G. Schmidt (eds): Progress in System and Robot Analysis and Control Design, pp. 29-40, Springer-Verlag, New York, 1999.

    Google Scholar 

  23. N.A. Lehtomaki, N.R. Sandell Jr. and M. Athans, Robustness results in linear quadratic Gaussian based multivariable control designs, IEEE Trans. Autom. Control, vol. AC-6, pp. 75-93, 1981.

    Google Scholar 

  24. N. Komaroff, Iterative matrix bounds and computational solutions to the discrete algebraic Riccati equation, IEEE Trans. Autom. Control, vol. AC-39, pp. 1676-1678, 1994.

    Google Scholar 

  25. C.-H. Lee, Upper matrix bound of the solution for the discrete Riccati equation, IEEE Trans. Autom. Control, vol. AC-42, pp. 840-842, 1997.

    Google Scholar 

  26. C.-H. Lee, Upper and lower bounds of the solutions of the discrete algebraic Riccati and Lyapounov matrix equations, Int. J. Control, vol. 68, pp. 579-598, 1997.

    Google Scholar 

  27. K. Yasuda and K. Hirai, Upper and lower bounds on the solution of the algebraic Riccati equation, IEEE Trans. Autom. Control, vol. AC-24, pp. 483-487, 1979.

    Google Scholar 

  28. C.-H. Lee and F.-C. Kung, Upper and lower matrix bounds of the solutions for the continuous and discrete Lyapunov equations, J. Franklin Inst., vol. 334B, pp. 539-546, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvanitis, K., Zaharenakis, E. & Soldatos, A. Optimal Noise Rejection in Structural Analysis by Means of Generalized Sampled-Data Hold Functions. Journal of Global Optimization 17, 19–42 (2000). https://doi.org/10.1023/A:1026726729698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026726729698

Navigation