Space Science Reviews

, Volume 94, Issue 1–2, pp 185–198 | Cite as

The Influence of Total Solar Irradiance on Climate

  • U. Cubasch
  • R. Voss


To estimate the effect of the solar variability on the climate, two estimates of the solar intensity variations during the last three centuries have been used as forcing in numerical simulations. The model employed to carry out the experiments was the same coupled global ocean-atmosphere model used in a number of studies to assess the effect of the anthropogenic greenhouse gases on climate. The near surface temperature and the tropospheric temperature distribution shows a clear response to the variability of the solar input. Even the thermohaline circulation reacts on the large amplitudes in the forcing. In the stratosphere, the response pattern is similar as in the observations, however, the 11-year cycle found in the forcing data does not excite an appreciable response. This might be due to the missing parameterisation of the increase in the UV-radiation at the solar cycle maximum and the connected increase of the stratospheric ozone concentration.


Ozone Solar Cycle Ozone Concentration Solar Irradiance Stratospheric Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arpe, K., Dümenil, L., and Giorgetta, M.A.: 1998, ‘Variability of the Indian monsoon in the ECHAM3 model-Sensitivity to sea surface temperature, soil moisture, and the stratospheric quasi-biennial oscillation’, J. Climate 11, 1,837–1,858.Google Scholar
  2. Balachandran, N.K., and Rind, D.: 1995, ‘Modeling the effects of UV variability and the QBO on the troposphere-stratosphere system. Part I: The middle atmosphere’, J. Climate 8, 2,058–2,079.Google Scholar
  3. Bertrand, C., van Ypersele, J.-P., and Berger, A.: 1999, ‘Volcanic and solar impacts on climate since 1700’, Climate Dynamics 15, 355–367.Google Scholar
  4. Bertrand, C., and van Ypersele, J.-P.: 1999, ‘Potential role of solar variability as an agent for climate change’, Climatic Change, in press.Google Scholar
  5. Crowley, T. J., and Kim, K.-Y.: 1993, ‘Towards development of a strategy for determining the origin of decadal-centennial scale climate variability’, Quat. Sci. Rev. 12, 375–385.Google Scholar
  6. Crowley, T. J., and Kim, K.-Y.: 1996, ‘Comparison of proxy records of climate change and solar forcing’, Geophys. Res. Lett. 23, 359–362.Google Scholar
  7. Cubasch, U., Santer, B. D., Hellbach, A., Hegerl, G.C., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Stössel, A., und Voss, R.: 1994, ‘Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model’, Climate Dynamics 10, 1–19.Google Scholar
  8. Cubasch, U., Hegerl, G., Hellbach, A., Höck, H., Mikolajewicz, U., Santer, B.D., and Voss, R.: 1995,’ A climate change simulation starting 1935’, Climate Dynamics 11, 71–84.Google Scholar
  9. Cubasch, U., Hegerl, G. and Waszkewitz, J.: 1996, ‘Prediction, detection and regional assessment of anthropogenic climate change’, Geophysica 32, 77–96.Google Scholar
  10. Cubasch, U., Hegerl, G.C., Voss, R., Waszkewitz, J., and Crowley, T. C.: 1997, ‘Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate’, Climate Dynamics 13, 757–767.Google Scholar
  11. Cubasch, U., Myles, A., Beniston, M., Bertrand, C., Brinkop, S., Caneill, J.-Y., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Gregory, J., Hegerl, G., Hoffmann, G., Johns, T., Jones, G., Laurent, C., McDonald, R., Mitchell, J., Parker, D., Oberhuber, J., Poncin, C., Sausen, R., Schlese, U., Stott, P., Tett, S., leTreut, H., Ulbrich, U., Valcke, S., Voss, R., Wild, M., and van Ypersele, J.-P.: 1999, ‘Simulation, diagnosis and detection of anthropogenic climate change’, in Final report of project ENV4-CT-0102, EU-DG XII, Brussels, Belgium.Google Scholar
  12. DKRZ: 1993, ‘The ECHAM3 atmospheric general circulation model’, in Tech. Rep. No. 6, DKRZ, Bundesstr 55, Hamburg, Germany.Google Scholar
  13. Drijfhout, S. S., Haarsma, R. J., Opsteegh, J.D., and Selten, F. M.: 1999, ‘Solar-induced versus internal variability in a coupled climate model’, Geophys. Res. Lett. 26 205–208.Google Scholar
  14. Friis-Christensen, E., and Lassen, K.: 1991, ‘Length of the solar cycle: An indicator of solar activity closely associated with climate’, Science 254, 698–700.Google Scholar
  15. Fröhlich, C., and Lean, J.: 1998, ‘The sun's total irradiance cycles, Trends and related climate change uncertainties since 1976’, Geophys. Res. Lett. 25, 4,377–4,380.Google Scholar
  16. Giorgetta, M.A. and Bengtsson, L.: 1999, ‘The potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapour in general circulation model experiments’, J. Geophys. Res. 104, 6,003–6,019.Google Scholar
  17. Haigh, J. D.: 1996, ‘The impact of solar variability on climate’, Science 272, 981–984.Google Scholar
  18. Haigh, J. D.: 1999a, ‘Modelling the impact of solar variability on climate’, Journ. of Atmos. and Solar-Terr. Phys. 61, 63–72.Google Scholar
  19. Haigh, J.D.: 1999b, ‘A GCM study of climate change in response to the 11-year solar cycle’, Q.J.R.M.S. 125, 871–892.Google Scholar
  20. Hegerl, G. C., Hasselmann, K., Cubasch, U., Mitchell, J. F.B., Roeckner, E., Voss, R., und Waszkewitz, J.: 1997, ‘Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change’, Climate Dynamics 13, 613–634.Google Scholar
  21. Hoyt, D.V., and Schatten, K.H.: 1993, ‘A discussion of plausible solar irradiance variations, 1700-1992’, J. Geophys. Res. 98, 18,895–18,906.Google Scholar
  22. IPCC: 1996, in J. T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds.), ‘Climate Change, 1995: The science of climate change’, Cambridge University Press, Cambridge.Google Scholar
  23. Jones, P.D. and Briffa, K.R.: 1992, ‘Global surface air temperature variations during the twentieth century: Part 1, spatial, temporal and seasonal details’, The Holocene 2, 165–179.Google Scholar
  24. Jones, P.D.: 1994, ‘Hemispheric surface air temperature variations: A reanalysis and an update to 1993’, J. Climate 7, 1,794–1,802.Google Scholar
  25. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisusaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetma, A., Reynolds, R., Jenne, R., and Joseph, D.: 1996, ‘The NCEP/NCAR 40-year re-analysis project’, Bull. Am. Met. Soc. 77, 437–471.Google Scholar
  26. Kelly, P.M. and Wigley, T.M. L.: 1992, ‘Solar cycle length, greenhouse forcing and global climate’, Nature 360, 328–330.Google Scholar
  27. Labitzke, K., and van Loon, H.: 1997, ‘The signal of the 11-year sunspot cycle in the upper troposphere-lower stratosphere’, Space Sci. Rev. 80, 393–410.Google Scholar
  28. van Loon, H., and Labitzke, K.: 1998, ‘The global range of the stratospheric decadal wave. Part I: Its association with the sunspot cycle in summer and in the annual mean, and with the troposphere’, J. Climate 11, 1529–1537.Google Scholar
  29. van Loon, H., and Labitzke, K.: 1999, ‘The signal of the 11-year solar cycle in the global stratosphere’, Journ. of Atmos. and Solar-Terr. Physics 61, 53–61.Google Scholar
  30. van Loon, H., and Labitzke, K.: 1999, ‘The influence of the 11-year solar cycle on the stratosphere below 30 km: a review’, Space Sci. Rev., this volume.Google Scholar
  31. Lean, J., Beer, J., and Bradley, R.: 1995a, ‘Reconstruction of solar irradiance since 1610: Implications for climate change’., Geophys. Res. Lett. 22, 3,195–3,198.Google Scholar
  32. Lean, J., White, O. R., and Skumanich, A.: 1995b, ‘On the ultraviolet spectral irradiance during the Maunder Minimum’, Glob. Biochem. Cycles 9, 171–172.Google Scholar
  33. Lean, J.: 1997, ‘The sun's variable radiation and its relevance to earth’, Annu. Rev. Astron. Astrophys. 35, 33–67.Google Scholar
  34. Lean, J., and Rind, D.: 1998, ‘Climate forcing by changing solar radiation’, J. Clim. 11, 3,069–3,093.Google Scholar
  35. Maier-Reimer, E., Mikolajewicz, U., and Hasselmann, K.: 1993, ‘Mean circulation of the Hamburg LSG OGCN and its sensitivity to the thermohaline surface forcing’, J. Phys. Oceano. 23, 731–751.Google Scholar
  36. Manabe, S., Stouffer, R. J., Spelmann, M. J., and Bryan K.: 1991, ‘Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2: I Annual mean response’, J. Climate 4, 785–818.Google Scholar
  37. Mann, M. E., Bradley, R. S., and Hughes, M.K.: 1998, ‘Global scale temperature patterns and climate forcing over the past six centuries’, Nature 392, 779–787.Google Scholar
  38. Paeth, H., Hense, A., Glowienka-Hense, R., Voss, R., and Cubasch, U.: 1999, ‘The North Atlantic Oscillation as an indicator for greenhouse-gas induced climate change’, Climate Dynamics 15, 953–960.Google Scholar
  39. Parker, D. E., Jones, P. D., Folland, C. K., and Bevan, A.: 1994, ‘Interdecadal changes of surface temperature since the late nineteenth century’, J. Geophys. Res. 99, 14,373–14,399.Google Scholar
  40. Rahmstorf, S.: 1999, ‘Shifting seas in the greenhouse’, Nature 399, 523–524.Google Scholar
  41. Reid, G.C.: 1991, ‘Solar irradiance variations and the global sea surface temperature record’, J. Geophys. Res. 96, 2,835–2,844.Google Scholar
  42. Rind, D., and Overpeck, J.: 1993, ‘Hypothesized causes of decade-to-century scale climate variability: Climate model results’, Quat. Sci. Rev. 12, 357–374.Google Scholar
  43. Rind, D. and N.K. Balachandran: 1995, ‘Modeling the effects of UV-variability and the QBO on the troposphere-stratosphere system. Part II: The troposphere’, J. Climate 8, 2,080–2,095.Google Scholar
  44. Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dömenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., and Windelband, M.: 1992, ‘Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution’. Report No. 93, Max-Planck-Institut für Meteorologie, Bundesstr. 55, Hamburg, Germany.Google Scholar
  45. Shindell, D. T., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: 1999, ‘Solar cycle variability, ozone and climate’, Science 284, 305–308.Google Scholar
  46. Spelman, M. J., and Manabe, S.: 1984, ‘Influence of oceanic heat transport upon the sensitivity of a model climate’, J. Geophys. Res. 89, 571–586.Google Scholar
  47. Stouffer, R. J., Manabe, S., and Vinnikov, K.Y.: 1994, ‘Model assessment of the role of natural variability in recent global warming’, Nature 367, 634–636.Google Scholar
  48. Stouffer, R. J., Hegerl, G.C., and Tett, S. F.: 1999, ‘A comparison of surface air temperature variability found in three 1000-year coupled ocean-atmosphere model integrations’, J. Climate 13, 513–537.Google Scholar
  49. Tett, S. F.B., Stott, P.A., Allen, M. R., Ingram, W. J., and Mitchell, J. F.B.: 1999, ‘Causes of twentieth-century temperature change near the Earth's surface’, Nature 399, 569–572.Google Scholar
  50. Voss, R., Sausen, R., and Cubasch, U.: 1998, ‘Periodically synchronously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG’, Climate Dynamics 14, 249–266.Google Scholar
  51. Voss, R., and Cubasch, U.: 2000, ‘Climate response to variations of the solar irradiance since 1700 in coupled OAGCM simulations’, J. Atmos. and Solar-Terr. Phys., submitted.Google Scholar
  52. Wetherald, R. T., and Manabe, S.: 1975, ‘The effects of changing the solar constant on the climate of a general circulation model’, J. Atmos. Sci. 32, 2,044–2,059.Google Scholar
  53. White, W.B., Lean, J., Cayan, D.R., and Dettinger, M. D.: 1997, ‘Response of global upper ocean temperature to changing solar irradiance’, J. Geophys. Res. 102, 3,255–3,266.Google Scholar
  54. Wigley, T.M. L., and Kelly, P.M.: 1990, ‘Holocene climate change, 14C wiggles and verification in solar irradiance’, Phil. Trans. Roy. Soc. (London) A330, 547–560.Google Scholar
  55. Wigley, T.M. L., and Raper, S.C.B.: 1990, ‘Climatic change due to solar irradiance changes’, Geophys. Res. Lett. 17, 2,169–2,172.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • U. Cubasch
    • 1
  • R. Voss
    • 1
  1. 1.Max-Planck-Institut für MeteorologieHamburgGermany

Personalised recommendations