Skip to main content
Log in

Letter: Autoparallels From a New Action Principle

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present a simpler and more powerful versionof the recently-discovered action principle for themotion of a spinless point particle in spacetimes withcurvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion witha torsion force, thus changing geodesics toautoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure ofparallelograms in the presence of torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Schouten, J. A. (1954). Ricci-Calculus (2nd. ed., Springer, Berlin).

    Google Scholar 

  2. Hehl, F. W., von der Heyde, P., Kerlick, G. D., Nester, J. M. (1976). Rev. Mod. Phys. 48, 393.

    Google Scholar 

  3. Kleinert, H. (1989) Gauge Fields in Condensed Matter, Vol. II, Part IV, Differential Geometry of Defects and Gravity (World Scientific, Singapore).

    Google Scholar 

  4. Hehl, F. W., McCrea, J. D., Mielke, E. W., Ne'eman, Y. (1995). Phys. Rep. 258, 1.

    Google Scholar 

  5. Hehl, F. W. (1971). Phys. Lett. A36, 225.

    Google Scholar 

  6. Kleinert, H. (1989). Mod. Phys. Lett. A4, 2329; first comprehensively discussed in the 1990 edition of the textbook, Ref. 7.

    Google Scholar 

  7. Kleinert, H. (1995). Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (2nd. ed., World Scientific, Singapore).

    Google Scholar 

  8. Kustaanheimo, P., Stiefel, E. (1965). J. Reine Angew. Math. 218, 204.

    Google Scholar 

  9. Stiefel, E. L., and Scheifele, G. (1971). Linear and Regular Celestial Mechanics (Springer, Berlin).

    Google Scholar 

  10. Kondo, K. (1952). In Proc. 2nd Japan Nat. Congr. Applied Mechanics (Tokyo).

  11. Bilby, B. A., Bullough, R., Smith, E. (1955). Proc. R. Soc. London A231, 263.

    Google Scholar 

  12. Kröner, E. (1981). In Physics of Defects (Les Houches, Session XXXV, 1980), R. Balian et al., eds. (North-Holland, Amsterdam).

    Google Scholar 

  13. Kröner, E. (1990). Int. J. Theor. Phys. 29, 1219.

    Google Scholar 

  14. Fiziev, P., Kleinert, H. (1996). Europhys. Lett. 35, 241.

    Google Scholar 

  15. Fiziev, P., Kleinert, H. (1995). “Euler Equations for Rigid Body — A Case for Autoparallel Trajectories in Spaces with Torsion.” Preprint hep-th/9503075.

  16. Kleinert, H. (1997). “Nonholonomic Mapping Principle for Classical and Quantum Mechanics in Spaces with Curvature and Torsion.” Preprint aps1997sep03 002 [full address http://publish.aps.org/eprint/gateway/eplist/aps1997sep03-002].

  17. Kleinert, H. (1998). Acta Phys. Polon. B29, 1033.

    Google Scholar 

  18. Kleinert, H., Pelster, A. (1998). Acta Phys. Polon. B29, 1015.

    Google Scholar 

  19. Kleinert, H. (1998). Phys. Lett. B440, 283.

    Google Scholar 

  20. Kleinert, H. (1998). “Universality Principle for Orbital Angular Momentum and Spin in Gravity with Torsion.” Preprint gr-qc/9807021.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinert, H., Pelster, A. Letter: Autoparallels From a New Action Principle. General Relativity and Gravitation 31, 1439–1447 (1999). https://doi.org/10.1023/A:1026701613987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026701613987

Navigation