Skip to main content
Log in

Misorientation dependence of discontinuous precipitation in Cu-Be alloy bicrystals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The boundary-dependent discontinuous precipitation (DP) for various [001] symmetric tilt boundaries in Cu–5.2 at% Be alloy bicrystals has been examined in the temperature range 523–698 K. The precipitate phase maintains a constant interlamellar spacing under isothermal growth conditions. The interlamellar spacing increases with an increase in temperature. The incubation period τ to initiate DP and cell growth rate for DP against misorientation angle diagrams show local peaks and cusps at the same misorientation angles. The positions of the peaks and cusps agree with those of cusps in the boundary energy against misorientation diagram. The formation and growth of DP occur more easily at higher-energy boundaries. A detailed kinetic analysis of the experimental data using the models by Turnbull and Petermann–Hornbogen has enabled the determination of the grain-boundary diffusivity of Be along each boundary in the temperature range studied. A close correlation is found between the diffusivity and the energy of boundaries. A higher-energy boundary has a higher diffusivity with a smaller activation energy and a smaller pre-exponential factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Frebel and J. Schenk, Z. Metallk. 70 (1979) 230.

    Google Scholar 

  2. M. Miki, T. Yamasaki, N. Ueyama and Y. Ogino, J. Japan Inst. Metals 53 (1989) 388.

    Google Scholar 

  3. T. Shibayanagi, Y. Kitazume and S. Hori, ibid. 54 (1990) 131.

    Google Scholar 

  4. I. Kaur, Y. Mishin and W. Gust, “Fundamentals of grain and interphase boundary diffusion,” 3rd ed. (John Wiley & Sons, Chichester, 1995) p. 303.

    Google Scholar 

  5. I. Manna, W. Gust and B. Predel, Scripta Metall. Mater. 24 (1990) 1635.

    Google Scholar 

  6. I. Manna, J. N. Jha and S. K. Pabi, J. Mater. Sci. 30 (1995) 1449.

    Google Scholar 

  7. H. Tsubakino and R. Nozato, J. Japan Inst. Metals 43 (1979) 42.

    Google Scholar 

  8. H. Tsubakino, R. Nozato and A. Yamamoto, Mater. Sci. Tech. 9 (1993) 288.

    Google Scholar 

  9. T. Mori, T. Ishii, M. Kajihara and M. Kato, Phil. Mag. Lett. 75 (1997) 367.

    Google Scholar 

  10. K. N. Tu and D. Turnbull, Acta Metall. 15 (1967) 369.

    Google Scholar 

  11. D. B. Williams and E. P. Butler, Inter. Metals Rev. 26 (1981) 153.

    Google Scholar 

  12. P. N. T. Unwin and R. B. Nicholson, Acta Metall. 17 (1969) 1379.

    Google Scholar 

  13. E. P. Butler and P. R. Swann, ibid. 24 (1976) 343.

    Google Scholar 

  14. P. Czurratis, R. Kroggel and H. LÖffer, Z. Metallk. 79 (1988) 307.

    Google Scholar 

  15. R. Monzen, K. Kitagawa, M. Kato and T. Mori, J. Japan Inst. Metals 54 (1990) 1308.

    Google Scholar 

  16. J. W. Rutter and K. T. Aust, Acta Metall. 13 (1965) 181.

    Google Scholar 

  17. E. M. Fridman, C. V. Kopezky and L. S. Shvindlerman, Z. Metallk. 66 (1975) 533.

    Google Scholar 

  18. D. Turnbull, Acta Metall. 3 (1955) 55.

    Google Scholar 

  19. J. Petermann and E. Hornbogen, Z. Metallk. 59 (1968) 814.

    Google Scholar 

  20. T. B. Massalski (Editor-in chief), “Binary Alloy Phase Diagrams” (ASM International, Materials Park, Ohio, 1992) p. 645.

    Google Scholar 

  21. H. Tanimura and G. Wassermann, Z. Metallk. 25 (1933) 179.

    Google Scholar 

  22. M. C. Inman and H. R. Tipler, Met. Rev. 8 (1963) 105.

    Google Scholar 

  23. R. L. Fogel'on, YA. A. Ugay, A. V. Pokoyev, I. A. Akimova and V. D. Kretinin, Phys. Metall. Metallogr. 35 (1973) 176.

    Google Scholar 

  24. A. N. Aleshin, B. S. Bokshtein and L. S. Shvindlerman, Sov. Phy. Sol. State 19 (1977) 2051.

    Google Scholar 

  25. S. Yukawa and M. J. Sinnott, Trans. Amer. Inst. Mining Eng. 215 (1959) 338.

    Google Scholar 

  26. M. Biscondi, in “Physical Chemistry of the Solid States: Applications to Metals and their Compounds,” edited by P. Lacombe (Elsevier, Amsterdam, 1984) p. 225.

    Google Scholar 

  27. W. R. Upthegrove and M. J. Sinnott, Trans. Amer. Soc. Metals 50 (1958) 1031.

    Google Scholar 

  28. Q. Ma and R. W. Balluffi, Acta Metall. Mater. 41 (1993) 133.

    Google Scholar 

  29. R. W. Balluffi, Metall. Trans. A 13 (1982) 2069.

    Google Scholar 

  30. P. G. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963) p. 44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monzen, R., Shigehara, H. & Kita, K. Misorientation dependence of discontinuous precipitation in Cu-Be alloy bicrystals. Journal of Materials Science 35, 5839–5843 (2000). https://doi.org/10.1023/A:1026700222794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026700222794

Keywords

Navigation