Skip to main content
Log in

An Investigation of the Structure of a Porous Substance by NMR Cryodiffusometry

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Cryoporosimetry and diffusometry, along with traditional techniques, are used to determine the characteristics of porous media. In real systems characterized by a pore-size distribution and a complex geometry of the pore space, the possibilities of these methods are limited. To obtain more data on the structure of the pore space, it was suggested that these approaches be combined in a unified experimental technique called cryodiffusometry. A concept of this technique lies in the investigation of self-diffusion in liquid-containing regions in the course of sequential stepwise melting of a substance precrystallized in pores. Possibilities of cryodiffusometry were demonstrated by investigating of the pore structure of gypsum stone as an example. An analysis of the data obtained showed that pores of the sample are shaped like layers characterized by an equally probable alignment in space. The layers are longer than 40 μm and vary in thickness from 200 to more than 1000 Å; in this case, regions of different thickness are randomly distributed over the layer. The thinner the layer, the more the shape of layer portions of different thicknesses deviates from spherical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Callaghan, P.T., Principles of Nuclear Magnetic Resonance Microscopy, Oxford: Clarendon, 1991.

    Google Scholar 

  2. Tanner, J.E. and Stejskal, E.O., J. C`em. Phys., 1968, vol. 49,no. 4, p. 1768.

    Google Scholar 

  3. Kimmich R., Stapf, S., Maklakov, A.I., et al., Magn. Resof. Imaging, 1996, vol. 14,no. 7/8, p. 793.

    Google Scholar 

  4. Mitra, P.P. and Sen, P.N., Phys. Rev. B, 1992, vol. 45,no. 1, p. 143.

    Google Scholar 

  5. Valiullin, R., Skirda, V., Kimmich, R., and Stapf, S., Phys. Rev. E, 1997, vol. 55,no. 3, p. 2664.

    Google Scholar 

  6. Latour, L.L., Mitra, P.P., Kleinberg, R.L., and Sotak, C.H., J. Magn. Reson., Ser. A, 1993, vol. 101, p. 342.

    Google Scholar 

  7. Hurliman, M.D., Helmer, K.G., Latour, L.L., and Sotak, C.H., J. Magn. Reson., Ser. A, 1994, vol. 111, p. 169.

    Google Scholar 

  8. Filippov, A.V., Khosina, E.V., and Khosin, V.G., J. Mater. Sci., 1969, vol. 31,no. 5, p. 1809.

    Google Scholar 

  9. Jackson, C.L. and McKenna, G.B., J. Chem. Phys., 1990, vol. 93,no. 12, p. 9002.

    Google Scholar 

  10. Strange, J.H., Rahman, M., and Smith, E.G., Phys. Rev. Lett., 1993, vol. 71,no. 21, p. 3589.

    Google Scholar 

  11. Hansen, E.W., Stocker, M., and Schmidt, R., J. Phys. Chem., 1996, vol. 100,no. 6, p. 2195.

    Google Scholar 

  12. Stapf, S. and Kimmich, R., Chem. Phys. Lett., 1997, vol. 275,no. 8, p. 261.

    Google Scholar 

  13. Filippov, A.V., Altykis, M.G., Khaliullin, M.I., et al., J. Mater. Sci., 1996, vol. 31,no. 8, p. 4369.

    Google Scholar 

  14. Callaghan, P.T. and Soderman, O.P., J. Phys. Chem., 1983, vol. 87,no. 4, p. 1737.

    Google Scholar 

  15. Fleischer, G., Skirda, V.D., and Werner, A., Eur. Biophys. J., 1990, vol. 19,no. 1, p. 1.

    Google Scholar 

  16. Fordham, E.G., Gibbs, S.J., and Hall, L.D., Magn. Reson. Imaging, 1994, vol. 12,no. 2, p. 279.

    Google Scholar 

  17. Gibbs, J.W., The Collected Works of J. Willard Gibbs, New York: Academic, 1928.

    Google Scholar 

  18. Thomson, W. (Lord Kelvin), Philos. Mag., 1871, vol. 42,no. 2, p. 448.

    Google Scholar 

  19. Alnaimi, S.M., Strange, J.H., and Smith, E.G., Magn. Reson & Imaging, 1994, vol. 12,no. 2, p. 257.

    Google Scholar 

  20. Venzel', B.I., Egorov, E.A., Zhazhenkov, V.V., and Kleiner, V.D., ktiInzh.%Fiz. Zh., 1985, no. 3, p. 461.

  21. Neuman, C.H., J. Chee. Phys., 1974, vod. 60,no. 9, p. 4508.

    Google Scholar 

  22. Balinov, B., Jofsson, B., Linse, P., and Soderman, O., J. Magn. Reson., Ser. Am, 1993, vol. 104, p. 17.

    Google Scholar 

  23. Callaghan, P.T., J. Magn. Reson., Ser. A, 1994, vol. 113, p. 53.

    Google Scholar 

  24. Linse, P. and Soderman, O., J. Magn. Reson., Ser. A, 1995, vol. 116, p. 77.

    Google Scholar 

  25. Kleinberg, R.L., Magn. Reson. Imaging, 1994, vol. 12,no. 2, p. 271.

    Google Scholar 

  26. Filippov, A.V. and Vartapetyan, R.Sh., Kolloidn. Zh., 1997, vol. 59,no. 2, p. 248.

    Google Scholar 

  27. Lyashkevich, I.M., Effektivnye stroitel'nye materialy na osnove gipsa i fosfogipsa (Efficient Building Materials based on Gypsum and Phosphogypsum), Minsk: Vysshaya Shkola, 1989.

    Google Scholar 

  28. Havlin, S. and Ben-Avraham, D., Adv. Phys., 1987, vol. 36,no. 7, p. 695.

    Google Scholar 

  29. Ziff, R.M. and Sapoval, B., J. Phys. A, 1987, vol. 19, p. L1169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A.V., Skirda, V.D. An Investigation of the Structure of a Porous Substance by NMR Cryodiffusometry. Colloid Journal 62, 759–764 (2000). https://doi.org/10.1023/A:1026691027751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026691027751

Keywords

Navigation