Skip to main content
Log in

Large Numbers and the Time Variation of Physical Constants

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a cosmological model consistent withobservation which not only explains the well-knownlarge-number coincidences, but also deduces the valuesof the mass, radius, and age of the universe, the Hubble constant and the cosmological constant,a relation between the pion mass and the Hubble constantknown so far only as a mysterious empirical coincidence,and other features. This model predicts an ever-expanding universe, as indeed latestastrophysical data indicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Barrow, J. D., and Tipler, F. J. (1986). The Anthropic Cosmological Principle, Oxford University Press, Oxford.

    Google Scholar 

  • Beesham, A. K. (1994a). International Journal of Theoretical Physics, 33, 1383–1386 (6).

    Google Scholar 

  • Beesham, A. K. (1994b). International Journal of Theoretical Physics, 33, 1935–1939 (9).

    Google Scholar 

  • Berman, M. S. (1992). International Journal of Theoretical Physics, 31, 1217–1219 (7).

    Google Scholar 

  • Berman, M. S. (1996). International Journal of Theoretical Physics, 35, 1033–1035 (5).

    Google Scholar 

  • Berman, M. S., and Gomide, F. de M. (1994). International Journal of Theoretical Physics, 33, 1933–1934 (9).

    Google Scholar 

  • Branch, D. (1998). Nature 391, 23–24.

    Google Scholar 

  • Carvalho, J. C. (1995). International Journal of Theoretical Physics, 34, 2507–2509 (2).

    Google Scholar 

  • Dirac, P. A. M. (1938). Proceedings of the Royal Society of London A, 165, 199.

    Google Scholar 

  • Feynman, R. P., and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals, McGraw-Hill, New York.

    Google Scholar 

  • Freedman, W. L., et al. (1994). Nature, 371, 757–762.

    Google Scholar 

  • Hayakawa, S. (1965). Progress of Theoretical Physics Supplement, 532–541.

  • Huang, K. (1975). Statistical Mechanics, Wiley Eastern, New Delhi.

    Google Scholar 

  • Ma, G. W. (1995). International Journal of Theoretical Physics, 34, 2501–2506 (12).

    Google Scholar 

  • Melnikov, V. N. (1994). International Journal of Theoretical Physics, 33, 1509–1579 (7).

    Google Scholar 

  • Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.

    Google Scholar 

  • Perlmutter, S., et al. (1998). Nature 391, 51–54.

    Google Scholar 

  • Pierece, M. J., et al. (1994). Nature, 371, 385–389.

    Google Scholar 

  • Rees, M., Ruffini, R., and Wheeler, J. A. (1974) Black Holes, Gravitational Waves and Cosmology: An Introduction to Current Research, Gordon and Breach, New York.

    Google Scholar 

  • Sidharth, B. G. (1997a). Quantum mechanical black holes: An alternative perspective, Proceedings of International Conference on Frontiers of Quantum Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Sidharth, B. G. (1997b). The universe of fluctuations, International Journal of Modern Physics A, (In Press).

  • Sidharth, B. G. (1997c). Quantum mechanical black holes: Towards a unification of quantum mechanics and general relativity, Indian Journal of Pure and Applied Physics, 35, 456–471 (7).

    Google Scholar 

  • Weinberg, S. (1972). Gravitation and Cosmology, Wiley, New York.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidharth, B.G. Large Numbers and the Time Variation of Physical Constants. International Journal of Theoretical Physics 37, 1307–1312 (1998). https://doi.org/10.1023/A:1026684022878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026684022878

Keywords

Navigation