Skip to main content
Log in

Gravitational and Electroweak Interactions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Schrodinger considered the variational principleδ ∫\(\sqrt { - g} {\text{ }}d^4 x = 0\), whereg is the determinant of the metricgμυ, but noted that ifgμυ is varied, the resultingEuler-Lagrange equations cannot serve as field equations. We writegμυ =gijhμ ihυ j, where gij = diag(-1, 1,1, 1), and express the vectors of the tetradhμ i as derivatives ofnonintegrable functions xi of the typecommonly used for phase factors in gauge theory, i.e.,hμ i =x i. We have previously shownthat if the xi are varied, the resultingEuler–Lagrange equations serve as field equations which imply the validity of Einstein equationswith a stress-energy tensor for the electroweak fieldand associated currents. In this paper, we express theseEinstein equations into two new forms, and use these forms to derive Lorentz-force-likeequations of motion. The electroweak field appears as aconsequence of the field equations (rather than as a“compensating field” introduced to secure local gauge invariance). There is no need forsymmetry breaking to accommodate mass, because the gaugesymmetry is approximate from the outset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bade, W. L., and H. Jehle (1953). Reviews of Modern Physics, 25, 714–728.

    Google Scholar 

  • Crease, R. P., and C. C. Mann (1986). The Second Creation, Macmillan, New York, p. 277.

    Google Scholar 

  • Dirac, P. A. M. (1978). Directions in Physics, Wiley, New York, p. 41.

    Google Scholar 

  • Eddington, A. E. (1957). The Mathematical Theory of Relativity, 2nd ed., Cambridge University Press, Cambridge, p. 222.

    Google Scholar 

  • Eisenhart, L. P. (1925). Riemannian Geometry, Princeton University Press, Princeton, New Jersey, p. 97.

    Google Scholar 

  • Loos, H. G. (1963). Annals of Physics, 25, 91–108.

    Google Scholar 

  • Moriyasu, K. (1983). An Elementary Primer for Gauge Theory, World Scientific, Singapore, p. 110.

    Google Scholar 

  • Pandres, D., Jr. (1962). Journal of Mathematical Physics, 3, 602–607.

    Google Scholar 

  • Pandres, D., Jr. (1981). Physical Review D, 24, 1499–1508.

    Google Scholar 

  • Pandres, D., Jr. (1984a). Physical Review D, 30, 317–324.

    Google Scholar 

  • Pandres, D., Jr. (1984b). International Journal of Theoretical Physics, 23, 839–842.

    Google Scholar 

  • Pandres, D., Jr. (1995). International Journal of Theoretical Physics, 34, 733–759.

    Google Scholar 

  • Salam, A. (1968). In Proceedings of the 8th Nobel Symposium on Elementary Particle Theory, N. Svartholm, ed., Almquist Forlag, Stockholm, pp. 367–377.

    Google Scholar 

  • Schrödinger, E. (1960). Space-Time Structure, Cambridge University Press, Cambridge, pp. 97, 99.

    Google Scholar 

  • Synge, J. L. (1960). Relativity: The General Theory, North-Holland, Amsterdam, pp. 14, 357.

    Google Scholar 

  • Weber, J. (1961). General Relativity and Gravitational Waves, Interscience, New York, p. 147.

    Google Scholar 

  • Weinberg, S. (1967). Physical Review Letters, 19, 1264–1266.

    Google Scholar 

  • Witten, E. (1988). Superstrings: A Theory of Everything?, P. C. W. Davis and J. Brown, eds., Cambridge University Press, Cambridge, p. 90.

    Google Scholar 

  • Yang, C. N. (1974). Physical Review Letters, 33, 445, and references cited therein.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandres, D.J. Gravitational and Electroweak Interactions. International Journal of Theoretical Physics 37, 827–839 (1998). https://doi.org/10.1023/A:1026672614333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026672614333

Keywords

Navigation