Skip to main content
Log in

Finitary Algebraic Superspace

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An algebraic scheme is suggested in whichdiscretized spacetime turns out to be a quantumobservable. As an example, a toy model producingspacetimes of four points with different topologies ispresented. The possibility of incorporating this schemeinto the framework of noncommutative differentialgeometry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aigner, M. (1976). Higher Combinatorics, Berlin.

  • Balachandran, A. P., Bimonte, G., Ercolessi, E., Landi, G., Lizzi, F., Sparano, G., and Teotonio-Sobrinho, P. (1996). Noncommutativ e lattices as finite approximations, Journal of Geometry and Physics, 18, 163–194.

    Google Scholar 

  • Birkhoff, G. (1967). Lattice Theory, Providence, Rhode Island.

  • Dubois-Violette, M. (1981). Calcul diffeérentiel et géometrie differentielle non-commutati ve, Comptes Rendus de l'Académie de Sciences de Paris, Series I, Mathématiques, (in press).

  • Finkelstein, D. (1996). Quantum Relativity, Springer, Berlin.

    Google Scholar 

  • Geroch, R. (1968). What is a singularity in general relativity? Annals of Physics, 48, 526.

    Google Scholar 

  • Geroch, R. (1972). Einstein algebras, Communications in Mathematical Physics, 26, 271.

    Google Scholar 

  • Heller, M. (1995). Commutative and non-commutati ve Einstein algebras, Acta Cosmologica, XXI-2, 111.

    Google Scholar 

  • Isham, C. J. (1989). An introduction to general topology and quantum topology. In Proceedings of the NATO ASI on Physics, Geometry and Topology, pp. 1–64.

  • Isham, C. J. (1994). Quantum logic and the histories approach to quantum mechanics, Journal of Mathematical Physics, 35, 2157.

    Google Scholar 

  • Landi, G. (1997). An introduction to noncommutative spaces and their geometry, eprint hepth/ 9701078.

  • Misner, C., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.

    Google Scholar 

  • Parfionov, G. N., and Zapatrin, R. R. (1995). Pointless spaces in general relativity, International Journal of Theoretical Physics, 34, 717.

    Google Scholar 

  • Parfionov, G. N., and Zapatrin, R. R. (1997). Empirical topology in the histories approach to quantum theory, eprint gr-qc/9703011.

  • Pierce, R. P. (1982). Associative Algebras, Springer, Berlin.

    Google Scholar 

  • Rota, G.-C. (1968). On the foundation of combinatorial theory, I. The theory of Möbius functions, Zetschrift für Wahrscheinlichkeitsth eorie, 2, 340.

    Google Scholar 

  • Sorkin, R. D. (1991). Finitary substitutes for continuous topological spaces, International Journal of Theoretical Physics, 30, 923.

    Google Scholar 

  • Stanley, R. P. (1986). Enumerative Combinatorics, Wadsworth and Brooks, Monterey, California.

    Google Scholar 

  • Zapatrin, R. R. (1993). Pre-Regge calculus: Topology via logic, International Journal of Theoretical Physics, 32, 779.

    Google Scholar 

  • Zapatrin, R. R. (1995). Matrix models for spacetime topodynamics, in Proceedings of the ICOMM'95 (Vienna, June 3–6, 1995), pp. 1–19; eprint gr-qc/9503066.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapatrin, R.R. Finitary Algebraic Superspace. International Journal of Theoretical Physics 37, 799–816 (1998). https://doi.org/10.1023/A:1026668513425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026668513425

Keywords

Navigation