Skip to main content
Log in

An Effective Stochastic Semiclassical Theory for the Gravitational Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Assuming that the mechanism proposed byGell-Mann and Hartle works as a mechanism fordecoherence and classicalization of the metric field, weformally derive the form of an effective theory for thegravitational field in a semiclassical regime. This effectivetheory takes the form of the usual semiclassical theoryof gravity, based on the semiclassical Einsteinequation, plus a stochastic correction which accounts for the backreaction of the lowest order matterstress-energy fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. H. Ford, Ann. Phys. 144, 238 (1982).

    Google Scholar 

  2. C.-I. Kuo and L. H. Ford, Phys. Rev. D 47, 4510 (1993); N. G. Phillips and B.-L. Hu, Phys. Rev. D 55, 6123 (1997).

    Google Scholar 

  3. B.-L. Hu, Physica A 158, 399 (1989).

    Google Scholar 

  4. R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).

    Google Scholar 

  5. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  6. E. Calzetta and B.-L. Hu, Phys. Rev. D 49, 6636 (1994).

    Google Scholar 

  7. B.-L. Hu and A. Matacz, Phys. Rev. D 51, 1577 (1995).

    Google Scholar 

  8. B.-L. Hu and S. Sinha, Phys. Rev. D 51, 1587 (1995).

    Google Scholar 

  9. A. O. Caldeira and A. J. Legget, Physica A 121, 587 (1983).

    Google Scholar 

  10. B.-L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992).

    Google Scholar 

  11. B.-L. Hu and A. Matacz, Phys. Rev. D 49, 6612 (1994).

    Google Scholar 

  12. C. Greiner and B. Müller, Phys. Rev. D 55, 1026 (1997).

    Google Scholar 

  13. A. Campos and E. Verdaguer, Phys. Rev. D 53, 1927 (1996).

    Google Scholar 

  14. F. C. Lombardo and F. D. Mazzitelli, Phys. Rev. D 55, 3889 (1997).

    Google Scholar 

  15. A. Campos and E. Verdaguer, Int. J. Theor. Phys. 36, 2525 (1997); E. Calzetta, A. Campos, and E. Verdaguer, Phys. Rev. D 56, 2163 (1997).

    Google Scholar 

  16. A. Campos and B.-L. Hu, Phys. Rev. D 58, 125021 (1998).

    Google Scholar 

  17. B.-L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 47, 1576 (1993).

    Google Scholar 

  18. A. Matacz, Phys. Rev. D 55, 1860 (1997).

    Google Scholar 

  19. M. Morikawa, Phys. Rev. D 33, 3607 (1986); D.-S. Lee and D. Boyanovsky, Nucl. Phys. B 406, 631 (1993).

    Google Scholar 

  20. R. Zh. Shaisultanov, hep-th/9509154; hep-th/9512144.

  21. M. Gleiser and R. O. Ramos, Phys. Rev. D 50, 2441 (1994); D. Boyanovsky, H. J. de Vega, R. Holman, D. S. Lee, and A. Singh, Phys. Rev. D 51, 4419 (1995); E. Calzetta and B.-L. Hu, Phys. Rev. D 55, 3536 (1997); M. Yamaguchi and J. Yokoyama, Phys. Rev. D 56, 4544 (1997); S. A. Ramsey, B.-L. Hu, and A. M. Stylianopoulos, Phys. Rev. D 57, 6003 (1998).

    Google Scholar 

  22. J. Schwinger, J. Math. Phys. 2, 407 (1961); Phys. Rev. 128, 2425 (1962); P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 1 (1963); 4, 12 (1963); L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965) ]; J. Schwinger, Particles, Sources, and Fields (Addison-Wesley, Reading, Massachusetts, 1970).

    Google Scholar 

  23. K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. Rep. 118, 1 (1985); N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145, 141 (1987).

    Google Scholar 

  24. R. B. Griffiths, J. Stat. Phys. 36, 219 (1984).

    Google Scholar 

  25. R. Omnès, Rev. Mod. Phys. 64, 339 (1992), and references therein; R. Omnès, The Interpretation of Quantum Mechanics Princeton University Press, Princeton, New Jersey, 1994).

    Google Scholar 

  26. M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345 (1993).

    Google Scholar 

  27. J. B. Hartle, In Gravitation and Quantizations, B. Julia and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1995), and references therein; gr-qc/9304006.

    Google Scholar 

  28. J. J. Halliwell, In Stochastic Evolution of Quantum States in Open Systems and Measurement Processes, L. Diósi, ed. (World Scientific, Singapore, 1994), gr-qc/9308005.

    Google Scholar 

  29. J. J. Halliwell, Ann N. Y. Acad. Sci. 755, 726 (1995), and references therein.

    Google Scholar 

  30. J. P. Paz and W. H. Zurek, Phys. Rev. D 48, 2728 (1993).

    Google Scholar 

  31. H. F. Dowker and J. J. Halliwell, Phys. Rev. D 46, 1580 (1992).

    Google Scholar 

  32. J. J. Halliwell, Phys. Rev. D 48, 4785 (1993); 57, 2337 (1998).

    Google Scholar 

  33. R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).

    Google Scholar 

  34. E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973).

    Google Scholar 

  35. S. Weinberg, The Quantum Theory of Fields, Vols. I and II (Cambridge University Press, Cambridge, 1995, 1996).

    Google Scholar 

  36. V. Hakim and V. Ambegaokar, Phys. Rev. A 32, 423 (1985); C. Morais Smith and A. O. Caldeira, Phys. Rev. A 36, 3509 (1987).

    Google Scholar 

  37. H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115 (1988).

    Google Scholar 

  38. Z.-B. Su, L.-Y. Chen, X.-T. Yu, and K.-C. Chou, Phys. Rev. B 37, 9810 (1988).

    Google Scholar 

  39. W. H. Zurek, In Conceptual Problems of Quantum Gravity, A. Ashtekar and J. Stachel, eds. (Birkhäuser, Boston, 1991); Phys. Today 44(10), 36 (1991); Vistas Astron. 37, 185 (1993).

    Google Scholar 

  40. T. Brun, Phys. Rev. D 47, 3383 (1993); J. P. Paz, S. Habib, and W. H. Zurek, Phys. Rev. D 47, 488 (1993).

    Google Scholar 

  41. F. Lombardo and F. D. Mazzitelli, Phys. Rev. D 53, 2001 (1996); T. Tanaka and M. Sakagami, Prog. Theor. Phys. 100, 547 (1998).

    Google Scholar 

  42. J. T. Whelan, Phys. Rev. D 57, 768 (1998); qr-qc/9702003.

    Google Scholar 

  43. E. Joos and H. D. Zeh, Z. Phys. B 59, 223 (1985).

    Google Scholar 

  44. E. Wigner, Phys. Rev. 40, 749 (1932); M. Hillery, R. F. O' Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984); J. J. Halliwell, Phys. Rev. D 36, 3626 (1987).

    Google Scholar 

  45. J. F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994); Phys. Rev. D 50, 3874 (1994); Helv. Phys. Acta 69, 269 (1996); in Advanced School on Effective Theories, F. Cornet and M. J. Herrero, eds. (World Scientific, Singapore, 1996), gr-qc/9512024; gr-qc/9712070.

    Google Scholar 

  46. T. S. Bunch, J. Phys. A 12, 517 (1979).

    Google Scholar 

  47. R. Martín and E. Verdaguer, gr-qc/9811070; Phys. Rev. D 60, 084008 (1999).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R., Verdaguer, E. An Effective Stochastic Semiclassical Theory for the Gravitational Field. International Journal of Theoretical Physics 38, 3049–3089 (1999). https://doi.org/10.1023/A:1026668418065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026668418065

Keywords

Navigation