Skip to main content
Log in

Canonical Symmetries in the Functional Formalism

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the phase-space generating functionalof the Green function, the canonical Ward identities(CWI) under local, nonlocal, and global transformationsin phase space for a system with a regular and singular Lagrangian have been derived. Therelation of global canonical symmetries to conservationlaws at the quantum level is presented. The advantage ofthis formulation is that one does not need to carry out the integration over canonicalmomenta in a phase-space path (functional) integral asin the traditional treatment in configuration space. Ingeneral, the connection between global canonicalsymmetries and conservation laws in classical theories isno longer preserved in quantum theories. Applications ofour formulation to the non-Abelian Chern-Simons (CS)theory are given, and new forms for CS gauge-ghost field proper vertices and the quantal conservedangular momentum of this system are obtained; thisangular momentum differs from the classical one in thatone needs to take into account the contribution of angular momenta of ghost fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Noether, Nachr. Ges. Wiss. Gotingen Math. Phys. Kl. 1918, 235 (1918).

    Google Scholar 

  2. E. L. Hill, Rev. Mod. Phys. 23, 253 (1951).

    Google Scholar 

  3. H. Suura and B. L. Young, Phys. Rev. D 8, 4353 (1973).

    Google Scholar 

  4. T. Lhallabi, Int. J. Theor. Phys. 28, 875 (1989).

    Google Scholar 

  5. Z.-P. Li, Acta Phys. Sin. 41, 710 (1992).

    Google Scholar 

  6. Z.-P. Li, J. Phys. A: Math. Gen. 24, 4261 (1991).

    Google Scholar 

  7. Z.-P. Li, Phys. Rev. E 50, 876 (1994).

    Google Scholar 

  8. J. C. Ward, Phys. Rev. 77, 293 (1950).

    Google Scholar 

  9. Y. Takahashi, Nuovo Cimento 6, 371 (1957).

    Google Scholar 

  10. A. A. Slavnov, Theor. Math. Phys. 10, 99 (1972).

    Google Scholar 

  11. J. C. Taylor, Nucl. Phys. B 33, 436 (1971).

    Google Scholar 

  12. S. D. Joglekar, Phys. Rev. D 44, 3879 (1991).

    Google Scholar 

  13. G. S. Danilov, Phys. Lett. B 257, 285 (1991).

    Google Scholar 

  14. B. L. Young, Introduction to Quantum Field Theories (Science Press, Beijing, 1987).

    Google Scholar 

  15. T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962).

    Google Scholar 

  16. I. S. Gerstein, R. Jackiw, B. W. Lee, and S. Weinberg, Phys. Rev. D 3, 2486 (1971).

    Google Scholar 

  17. T. S. Du, H. C. Yin, and T. N. Ruan, Nucl. Phys. B 164, 103 (1980).

    Google Scholar 

  18. Z.-P. Li, Classical and Quantal Dynamics of Constrained System and Their Symmetry Properties, Beijing Polytechnic University, Beijing (1993).

    Google Scholar 

  19. M. M. Mizrahi, J. Math. Phys. 19, 298 (1978).

    Google Scholar 

  20. Z.-P. Li and C. Yang, J. Phys. A Math. Gen. 28, 5931 (1995).

    Google Scholar 

  21. Z.-P. Li, Europhys. Lett. 27, 563 (1994).

    Google Scholar 

  22. Y. P. Kuang and Y. P. Li, Phys. Energiae Fortis Phys. Nuclearis 4, 286 (1980).

    Google Scholar 

  23. E. S. Fradkin and M. Ya. Palchik, Phys. Lett. B 147, 86 (1984).

    Google Scholar 

  24. M. Ya. Palchik, Yad. Fiz. 42, 522 (1985).

    Google Scholar 

  25. Z.-P. Li, Sci. China A 36, 1212 (1993).

    Google Scholar 

  26. Z.-P. Li, Acta Phys. Sin. (Overseas Ed.) 3, 481 (1994).

    Google Scholar 

  27. Z.-P. Li, High Energy Phys. Nucl. Phys. 19, 157 (1994).

    Google Scholar 

  28. Z.-P. Li, Int. J. Theor. Phys. 26, 853 (1987).

    Google Scholar 

  29. P. A.M. Dirac, Lecture on Quantum Mechanics, Yeshiva University Press, New York (1964).

    Google Scholar 

  30. K. Sundermeyer, Lecture Notes in Physics, No. 169, Springer-Verlag, Berlin (1982).

    Google Scholar 

  31. D. M. Gitman and I. V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, Berlin (1990).

    Google Scholar 

  32. L. D. Faddeev, Theor. Math. Phys. 1, 1 (1970).

    Google Scholar 

  33. P. Senjanovic, Ann. Phys. (N.Y.) 100, 227 (1976).

    Google Scholar 

  34. W. Siegel, Phys. Lett. B 128, 397 (1983).

    Google Scholar 

  35. J. W. Van Holten, Phys. Lett B 200, 507 (1988).

    Google Scholar 

  36. Z.-P. Li, Int. J. Theor. Phys. 32, 201 (1993).

    Google Scholar 

  37. R. Banerjee, Phys. Rev. D 48, 2905 (1993); Nucl. Phys. B 419, 611 (1994).

    Google Scholar 

  38. J. K. Kim, W.-T. Kim, and H. Shin, J. Phys. A Math. Gen. 27, 6067 (1994).

    Google Scholar 

  39. A. Lerda, Anyons, Springer-Verlag, Berlin (1992).

    Google Scholar 

  40. A. Antillon, J. Escalona, G. Germat, et al., Phys. Lett. B 359, 327 (1995).

    Google Scholar 

  41. R. Banerjee and B. Chakraborty, Ann. Phys. (N.Y.) 247, 188 (1996).

    Google Scholar 

  42. A. Foussats, E. Manavella, C. Repetto, et al., Int. J. Theor. Phys. 34, 1037 (1995).

    Google Scholar 

  43. S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.) 140, 372 (1982).

    Google Scholar 

  44. Z. S. Man, Y. X. Chen, and K. Li, Commun Theor. Phys. 24, 491 (1995).

    Google Scholar 

  45. Z. P. Li, Int. J. Theor. Phys. 34, 523 (1995).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZP., Jun, B. Canonical Symmetries in the Functional Formalism. International Journal of Theoretical Physics 38, 1677–1695 (1999). https://doi.org/10.1023/A:1026659014663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026659014663

Keywords

Navigation