Skip to main content
Log in

Can the Local Energy-Momentum Conservation Laws be Derived Solely from Field Equations?

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The vanishing of the divergence of the matter stress-energy tensor for General Relativity is a particular case of a general identity, which follows from the covariance of the matter Lagrangian in much the same way as (generalized) Bianchi identities follow from the covariance of the purely gravitational Lagrangian. This identity, holding for any covariant theory of gravitating matter, relates the divergence of the stress tensor with a combination of the field equations and their derivatives. One could thus wonder if, according to a recent suggestion [1], the energy-momentum tensor for gravitating fields can be computed through a suitable rearrangement of the matter field equations, without relying on the variational definition. We show that this can be done only in particular cases, while in general it leads to ambiguities and possibly to wrong results. Moreover, in nontrivial cases the computations turn out to be more difficult than the standard variational technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Accioly, A. J., Azeredo, A. D., de Aragãno, C. M. L., and Mukai, H. (1997). Class. Quantum Grav. 141163.

  2. Trautman, A. (1962). In Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York), p. 169.

    Google Scholar 

  3. Aragone, C., and Deser, S. (1980). Nuovo Cimento B 57, 33.

    Google Scholar 

  4. Ferraris, M., and Francaviglia, M. (1992). Class. Quantum. Grav. 9, S79.

    Google Scholar 

  5. DeWitt, B. S. (1965). Dynamical Theory of Groups and Fields (New York, Gordon & Breach).

    Google Scholar 

  6. Ferrara, S., Freedman, D., and van Nieuwenhuizen, P. (1976). Phys. Rev. D 13, 3214.

    Google Scholar 

  7. Deser, S., and Zumino, B. (1976). Phys. Lett. B 62, 335.

    Google Scholar 

  8. Magnano, G., and Sokołowski, L. M. (1994). Phys. Rev. D 50, 5039.

    Google Scholar 

  9. Accioly, A. J., Wichoski, U. F., Kwok, S. F. and Pereira da Silva, N. L. P. (1993). Class. Quantum Grav. 14, L215.

    Google Scholar 

  10. Magnano, G., Ferraris, M., and Francaviglia, M. (1987). Gen. Rel. Grav. 19, 465.

    Google Scholar 

  11. Brans, C. H. (1988). Class. Quantum Grav. 5, L197.

    Google Scholar 

  12. Sokołowski, L. M. (1989). Class. Quantum Grav. 6, 2045.

    Google Scholar 

  13. Ferraris, M., Francaviglia, M., and Magnano, G. (1990). Class. Quantum Grav. 7, 261.

    Google Scholar 

  14. Parker, L., and Christensen, S. M. (1994). Math TENSOR: a System for Doing Tensor Analysis by Computer (Addison-Wesley, Reading, Mass.).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnano, G., Sokołowski, L.M. Can the Local Energy-Momentum Conservation Laws be Derived Solely from Field Equations?. General Relativity and Gravitation 30, 1281–1288 (1998). https://doi.org/10.1023/A:1026655230534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026655230534

Keywords

Navigation