Skip to main content
Log in

Dynamics, Thermodynamics, and Time Asymmetry

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

There are two schools, or lines, of thoughtwhich attempt to unify the apparently divergent laws ofdynamics and thermodynamics and to explain the observedtime asymmetry of the universe and most of its subsystems in spite of the fact that thesesystems are driven by time-symmetric evolutionequations. They will be called the coarse-graining andthe extended dynamics schools (even if these names onlypartially describe their philosophy). The coarse-grainingschool obtains time asymmetry via a projection of thestate space onto a space of “relevant”states. The corresponding projection of the primitivereversible evolution laws yields effective irreversibleevolution laws for the relevant states. Extendeddynamics always uses the same primitive reversibleevolution laws. But these laws (in adequate extensionsof the usual spaces where they are formulated)have a set of solutions S that can be decomposed intotwo subsets S+ and S- oftime-asymmetric solutions. Time asymmetry is establishedby choosing one of these two sets as the arena in which to formulate thetheory. This paper explains in the simplestself-contained and unbiased way the main characteristicsof both schools and points out the advantages anddisadvantages of each, in such a way as to make explicit thedebate between the schools. Some cosmological featuresof the theory are also considered, mainly the problem ofthe low-entropy initial state of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anosov, D. V. (1963). Soviet Mathematics-Doklady, 4, 1153.

    Google Scholar 

  • Antoniou, I., and Prigogine, I. (1993). Physica A, 192, 443.

    Google Scholar 

  • Antoniou, I., and Tasaki, S. (1991). Physica A, 190, 303.

    Google Scholar 

  • Antoniou, I., and Tasaki, S. (1993a). International Journal of Quantum Chemistry, 46, 427.

    Google Scholar 

  • Antoniou, I., and Tasaki, S. (1993b). ULB preprint.

  • Antoniou, I., Laura, R., Tasaki, S., and Suchanecki, N. (1995). ULB preprint.

  • Aquilano, R., and Castagnino, M. (1996a). Modern Physics Letters A, 11, 755.

    Google Scholar 

  • Aquilano, R., and Castagnino, M. (1996b). Astrophysics and Space Science, 238, 159.

    Google Scholar 

  • Arnold, V. I., and Avez, A. (1968). Ergodic Problems of Classical Mechanics, Benjamin, New York.

    Google Scholar 

  • Balazs, N., and Voros, A. (1990). Annals of Physic, 199, 123.

    Google Scholar 

  • Balescu, R. (1975). Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley, New York.

    Google Scholar 

  • Ballentine, L. E. (1990). Quantum Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Bohm, A. (1979). Quantum Mechanics: Foundations and Applications, Springer-Verlag, Berlin.

    Google Scholar 

  • Bohm, A., and Gadella, M. (1989). Dirac Kets, Gamow Vectors, and Gel' fand Triplets, Springer-Verlag, Berlin.

    Google Scholar 

  • Caldeira, A., and Leggett, A. (1995). Physical Review D, 31, 1059.

    Google Scholar 

  • Castagnino, M., and Gunzig, E. (1997). A landscape in time-asymmetry, International Journal of Theoretical Physics, in press.

  • Castagnino, M., and Laura, R. (1983). The cosmological essence of time asymmetry, in Proceedings SILARG VIII, W. Rodrigues, ed., World Scientific, Singapore.

    Google Scholar 

  • Castagnino, M., and Laura, R. (1997). A minimal irreversible quantum mechanics, Physical Review A, in press.

  • Castagnino, M., Gaioli, F., and Gunzig, E. (1996). Foundations of Cosmic Physics, 16, 221.

    Google Scholar 

  • Castagnino, M., Gadella, M., Gaioli, F., and Laura, R. (1997). Gamov vectors and time asymmetry, Fortschritte der Physik, submitted.

  • Castagnino, M., Gunzig, E., and Lombardo, F. (1995). General Relativity and Gravitation, 27, 257.

    Google Scholar 

  • Davies, P. C. (1994). Stirring up trouble, in Physical Origin of Time Asymmetry, J. Halliwell et al., eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Gadella, M., and Rubin, G. E. (1996). International Journal of Quantum Chemistry, 58, 441.

    Google Scholar 

  • Gel'fand, I., and Shilov, G. (1968). Generalized Functions, Academic Press, New York.

    Google Scholar 

  • Halmos, P. R. (1956). Lectures on Ergodic Theory, Chelsea, New York.

    Google Scholar 

  • Hillery, M., O'Conell, R. F., Scully, M. D., and Wigner, E. P. (1984). Physics Reports, 106, xxx.

    Google Scholar 

  • Hu, B. L., Paz, J. P., and Zhang, Y. (1992a). Physical Review D, 45, 2843.

    Google Scholar 

  • Hu, B. L., Paz, J. P., and Zhang, Y. (1997b). Quantum origin of noise on fluctuation in cosmology, in Proceedings Conference on the Origin of Structure in the Universe, World Scientific, Singapore.

    Google Scholar 

  • Hu, B. L., Paz, J. P., and Zhang, Y. (1993). Physical Review D, 47, 1776.

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M. (1958). Statistical Physics, Pergamon Press, Oxford.

    Google Scholar 

  • Lasota, A., and Mackey, M. C. (1985). Probabilistic Properties of Deterministic Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  • Laura, R., and Castagnino, M. (1997). Functional approach for quantum systems with continuous spectrum, Physical Review E, in press.

  • Lebowitz, J. L (1994). Time's arrow and Boltzmann's entropy, in Physical Origin of Time Asymmetry, J. Halliwell et al., eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Mackey, M. C. (1989). Reviews of Modern Physics, 61, 981.

    Google Scholar 

  • Messiah, A. (1962). Quantum Mechanics, North-Holland, Amsterdam.

    Google Scholar 

  • Misra, B., Prigogine, I., and Courbage, M. (1979). Physica A, 98, 1.

    Google Scholar 

  • Ordonez, A. (1997). Rigged Hilbert spaces associated with Misra–Prigogine–Courbage theory of irreversibility, Physica A, in press.

  • Prigogine, I. (1980). From Being to Becoming: Time and Complexity in Physical Sciences, Freeman, San Francisco.

    Google Scholar 

  • Prigogine, I. (1993). Time, dynamics, and chaos, in Nobel Conference XXVI, Chaos: The New Science, John Holte, ed., Gustavus Adolphus College, St. Peter, Minnesota.

    Google Scholar 

  • Prigogine, I., and Petrosky, T. (1993). Physics Letters A, 182, 5.

    Google Scholar 

  • Prigogine, I., George, C., Henin, F., and Rosenfeld, L. (1980). Chemica Scripta, 4, 5.

    Google Scholar 

  • Reeves, H. (1993). The growth of complexity in expanding universes, in The Anthropic Principle, Proceedings Second Venice Conference on Cosmology, F. Bertolo and U. Cino, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Rochlin, V. A. (1969). American Mathematical Society Translations (2), 39, 1.

    Google Scholar 

  • Roman, P. (1965). Advanced Quantum Theory, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Sachs, R. G. (1987). The Physics of Time Reversal, University of Chicago Press, Chicago.

    Google Scholar 

  • Schild, P. (1979). The Theory of Bernoulli Shift, University of Chicago Press, Chicago.

    Google Scholar 

  • Sudarshan, E. C. G., Chiu, C. B., and Gorini, V. (1978). Physical Review D, 18, 2914.

    Google Scholar 

  • Tabor, G. (1980). Chaos and Integrability in Non-linear Dynamics, Wiley, New York.

    Google Scholar 

  • Tolman, R. C. (1987). Relativity, Thermodynamics, and Cosmology, Dover, New York.

    Google Scholar 

  • Voigt, J. (1981). Communications in Mathematical Physics, 81, 31.

    Google Scholar 

  • Walter, P. (1982). An Introduction to Ergodic Theory, Springer-Verlag, Berlin.

    Google Scholar 

  • Zeh, D. (1989). The Physical Bases of the Direction of Time, Springer-Verlag, Berlin.

    Google Scholar 

  • Zwanzig, R. W. (1960). Chemical Physics, 33, 1388.

    Google Scholar 

  • Zwanzig, R. W. (1961). Statistical mechanics of irreversibility, in Lectures in Theoretical Physics III, W. E. Britten et al., eds., Interscience, New York.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnino, M.A., Gunzig, E. Dynamics, Thermodynamics, and Time Asymmetry. International Journal of Theoretical Physics 37, 1333–1422 (1998). https://doi.org/10.1023/A:1026640307857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026640307857

Keywords

Navigation