Skip to main content
Log in

Maximal Beable Subalgebras of Quantum Mechanical Observables

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Given a state on an algebra of bounded quantummechanical observables, we investigate those subalgebrasthat are maximal with respect to the property that thegiven state's restriction to the subalgebra is a mixture of dispersion-free states —what we call maximal beable subalgebras (borrowingterminology due to J. S. Bell). We also extend ourresults to the theory of algebras of unboundedobservables (as developed by Kadison), and show how ourresults articulate a solid mathematical foundation forcertain tenets of the orthodox Copenhagen interpretationof quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Anderson, Extensions, restrictions, and representations of states on C*-algebras, Transactions of the American Mathematical Society 249 (1979), 303-329.

    Google Scholar 

  2. J. L. Bell, Logical reflections on the Kochen-Specker theorem, in Perspectives on Quantum Reality (R. Clifton, ed.), Kluwer, Dordrecht (1996), pp. 227-235.

    Google Scholar 

  3. J. S. Bell, On the problem of hidden variables in quantum mechanics, Reviews of Modern Physics 38 (1966), 447-452.

    Google Scholar 

  4. J. S. Bell, Subject and object, in The Physicist's Conception of Nature (J. Mehra, ed.), Reidel, Dordrecht (1973), pp. 687-690.

    Google Scholar 

  5. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge (1987).

    Google Scholar 

  6. D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Parts I and II, Physical Review 85 (1952), 166-193.

    Google Scholar 

  7. N. Bohr, Can quantum-mechani cal description of physical reality be considered complete? Physical Review 48 (1935), 696-702.

    Google Scholar 

  8. N. Bohr, On the notions of causality and complementarity, Dialectica 2 (1948), 312-319.

    Google Scholar 

  9. J. Bub, Complementarity and the orthodox (Dirac-von Neumann) interpretation of quantum mechanics, in Perspectives on Quantum Reality (R. Clifton, ed.), Kluwer, Dordrecht (1996), pp. 211-226.

    Google Scholar 

  10. J. Bub, Interpreting the Quantum World, Cambridge University Press, Cambridge (1997).

    Google Scholar 

  11. J. Bub and R. Clifton, A uniqueness theorem for no-collapse interpretations of quantum mechanics, Studies in History and Philosophy of Modern Physics 27 (1996), 181-219.

    Article  Google Scholar 

  12. R. Clifton, Getting contextual and nonlocal elements-of-reality the easy way, American Journal of Physics 61 (1993), 443-447.

    Google Scholar 

  13. R. Clifton, Independently motivating the Kochen-Dieks modal interpretation of quantum mechanics, British Journal for Philosophy of Science 46 (1995), 33-57.

    Google Scholar 

  14. R. Clifton, Making sense of the Kochen-Dieks no-collapse interpretation of quantum mechanics independent of the measurement problem, Annals of the New York Academy of Sciences 775 (1995), 570-578.

    Google Scholar 

  15. R. Clifton, Beables in algebraic quantum theory, in From Physics to Philosophy (J. Butterfield and C. Pagonis, eds.), Cambridge University Press, Cambridge, in press.

  16. P. A. M. Dirac, Quantum Mechanics, 4th ed., Clarendon Press, Oxford (1958).

    Google Scholar 

  17. G. G. Emch, Mathematical and Conceptual Foundations of 20th Century Physics, North-Holland, Amsterdam (1984).

    Google Scholar 

  18. A. M. Gleason, Measures on closed subspaces of Hilbert space, Journal of Mathematics and Mechanics 6 (1957), 885-893.

    Google Scholar 

  19. S. S. Horuzhy, Introduction to Algebraic Quantum Field Theory, Kluwer, Boston (1990).

    Google Scholar 

  20. D. Howard, What makes a classical concept classical? Toward a reconstruction of Niels Bohr's philosophy of physics, in Niels Bohr and Contemporary Philosophy (J. Faye and H. J. Folse, eds.), Kluwer, Dordrecht (1994), pp. 201-229.

    Google Scholar 

  21. R. Jost, Measures on the finite dimensional subspaces of a Hilbert space, in Studies in Mathematical Physics: Essays in Honour of Valentine Bergmann, Princeton University Press, Princeton, New Jersey (1976), pp. 209-228.

    Google Scholar 

  22. R. V. Kadison, Algebras of unbounded functions and operators, Expositiones Mathematicae 4 (1986), 3-33.

    Google Scholar 

  23. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, American Mathematical Society, Providence, Rhode Island (1997).

    Google Scholar 

  24. R. V. Kadison and I. M. Singer, Extensions of pure states, American Journal of Mathematics 81 (1959), 383-400.

    Google Scholar 

  25. S. Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics 17 (1967), 59-87.

    Google Scholar 

  26. N. P. Landsman, Poisson spaces with a transition probability, Reviews of Mathematical Physics 9 (1997), 29-57.

    Google Scholar 

  27. N. P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer-Verlag, New York (1998).

    Google Scholar 

  28. D. B. Lowdenslager, On postulates for general quantum mechanics, Proceedings of the American Mathematical Society 8 (1957), 88-91.

    Google Scholar 

  29. B. Misra, When can hidden variables be excluded in quantum mechanics? Nuovo Cimento XLVIIA (1967), 841-859.

    Google Scholar 

  30. A. Peres, Quantum Theory: Concepts and Methods, Kluwer, Dordrecht (1993).

    Google Scholar 

  31. A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Physical Review 47 (1935), 777-78 0.

    Google Scholar 

  32. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York (1987).

    Google Scholar 

  33. E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23 (1935), 807-812, 823-828, 844-849.

    Google Scholar 

  34. I. E. Segal, Postulates for general quantum mechanics, Annals of Mathematics 48 (1947), 930-948.

    Google Scholar 

  35. P. Teller, On the problem of hidden variables for quantum mechanical observables with continuous spectra, Philosophy of Science 44 (1977), 475-477.

    Google Scholar 

  36. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey (1955).

    Google Scholar 

  37. J. Zimba and R. Clifton, Valuations on functionally closed sets of quantum-mechanical observables and Von Neumann's no-hidden-variables theorem, in The Modal Interpretation of Quantum Mechanics (D. Dieks and P. Vermaas, eds.), Kluwer, Dordrecht (1998), pp. 69-101.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halvorson, H., Clifton, R. Maximal Beable Subalgebras of Quantum Mechanical Observables. International Journal of Theoretical Physics 38, 2441–2484 (1999). https://doi.org/10.1023/A:1026628407645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026628407645

Keywords

Navigation