Complexities and Their Applications to Characterization of Chaos

Abstract

The concept of complexity in InformationDynamics is discussed. The chaos degree defined by thecomplexities is applied to examine chaotic behavior oflogistic map.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Accardi, L., Ohya, M., and Watanabe, N. (1996). Note on quantum dynamical entropy, Reports on Mathematical Physics, 38, 457-469.

    Google Scholar 

  2. Benatti, F. (1993). Deterministic Chaos in Infinite Quantum Systems, Springer-Verlag, Berlin.

    Google Scholar 

  3. Billingsley, P. (1965). Ergodic Theory and Information, Wiley, New York.

    Google Scholar 

  4. Connes, A., and Størmer, E. (1975). Entropy for automorphisms of II1 von Neumann algebras, Acta Mathematica, 134, 289-306.

    Google Scholar 

  5. Connes, A., Narnhofer, H., and Thirring, W. (1987). Dynamical entropy of C*-algebras and von Neumann algebras, Communications in Mathematical Physics, 112, 691-719.

    Google Scholar 

  6. Emch, G. G. (1974). Positivity of the K-entropy on non-abelian K-flows, Zeitschrift für Wahrscheinlichkeits theorie Verwandte Gebiete, 29, 241-252.

    Google Scholar 

  7. Holevo, A. S. (1973). Some estimates for the amount of information transmittable by a quantum communication channel, Problemy Peredachi Informacii, 9, 3-11 [in Russian].

    Google Scholar 

  8. Ingarden, R. S. (1976). Quantum information theory, Reports on Mathematical Physics, 10, 43-73.

    Google Scholar 

  9. Ingarden, R. S., Kossakowski, A., and Ohya, M. (1997). Information Dynamics and Open System, Kluwer Academic Publishers.

  10. Levitin, L. B. (1991). Physical information theory for 30 years: basic concepts and results, in Springer Lecture Notes in Physics, Vol. 378, p. 101-110.

    Google Scholar 

  11. Matsuoka, T., and Ohya, M. (1995). Fractal dimensions of states and its application to Ising model Reports on Mathematical Physics, 36, 365-379.

    Google Scholar 

  12. Misiurewicz, M. (1981). Absolutely continuous measures for certain maps of interval, Publications Mathematiques IHES, 53, 17-51.

    Google Scholar 

  13. Muraki, N., and Ohya, M. (1996). Entropy functionals of Kolmogorov Sinai type and their limit theorems, Letters in Mathematical Physics, 36, 327-335.

    Google Scholar 

  14. Ohya, M. (1981). Quantum ergodic channels in operator algebras, Journal of Mathematical Analysis and Applications, 84, 318-327.

    Google Scholar 

  15. Ohya, M. (1983a). On compound state and mutual information in quantum information theory, IEEE Transaction of Information Theory, 29, 770-774.

    Google Scholar 

  16. Ohya, M. (1983b). Note on quantum probability, Lettere al Nuovo Cimento, 38, 402-406.

    Google Scholar 

  17. Ohya, M. (1989). Some aspects of quantum information theory and their applications to irreversible processes, Reports on Mathematical Physics, 27, 19-47.

    Google Scholar 

  18. Ohya, M. (1991a). Information dynamics and its application to optical communication processes, Springer Lecture Notes in Physics, Vol. 378, pp. 81-92.

    Google Scholar 

  19. Ohya, M. (1991b). Fractal dimension of states, Quantum Probability and Related Topics, 6, 359-369.

    Google Scholar 

  20. Ohya, M. (1995). State change, complexity and fractal in quantum systems, Quantum Communications and Measurement, 2, 309-320.

    Google Scholar 

  21. Ohya, M. (n.d.-a). Foundation of entropy, complexity and fractal in quantum systems, in International Congress of Probability toward 2000, to appear.

  22. Ohya, M. (n.d.-b). Fundamentals of quantum mutual entropy and capacity, submitted.

  23. Ohya, M. (n.d.-c). Applications of information dynamics to genome sequences, SUT preprint.

  24. Ohya, M. (1997). Complexity and fractal dimensions for quantum states, Open Systems and Information Dynamics, 4, 141-157.

    Google Scholar 

  25. Ohya, M., and Petz, D. (1993). Quantum Entropy and Its Use, Springer-Verlag, Berlin.

    Google Scholar 

  26. Ohya M., and Watanabe N. (1993). Information dynamics and its application to Gaussian communication process, Maximum Entropy and Bayesian Method, 12, 195-203.

    Google Scholar 

  27. Ohya, M., Petz, D., and Watanabe, N. (1997). On capacities of quantum channels, Probability and Mathematical Statistics, 17, 179-196.

    Google Scholar 

  28. Shannon, C. E. (1948). Mathematical theory of communication, Bell System Technical Journal, 27, 379-423.

    Google Scholar 

  29. Shaw, R. (1981). Strange attractors, chaotic behavior and information flow, Zeitschrift für Naturforschung, 36a, 80-112.

    Google Scholar 

  30. Uhlmann, A. (1977). Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory, Communication in Mathematical Physics, 54, 21-32.

    Google Scholar 

  31. Umegaki, H. (1962). Conditional expectations in an operator algebra IV (entropy and information), Kodai Mathematical Seminar Reports, 14, 59-85.

    Google Scholar 

  32. Von Neumann, J. (1932). Mathematischen Grundlagen Quantenmechanik, Springer, Berlin.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohya, M. Complexities and Their Applications to Characterization of Chaos. International Journal of Theoretical Physics 37, 495–505 (1998). https://doi.org/10.1023/A:1026620313483

Download citation

Keywords

  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Chaotic Behavior
  • Chaos Degree