Skip to main content
Log in

Abstract

In order to obtain a consistent formulation ofoctonionic quantum mechanics (OQM), we introduceleft/right-barred operators. Such operators enable us tofind the translation rules between octonionic numbers and 8 × 8 real matrices (a translation isalso given for 4 × 4 complex matrices). The use ofa complex geometry allows us to overcome the hermiticityproblem and define an appropriate momentum operator within OQM. As an application of our results,we develop an octonionic relativistic free waveequation, linear in the derivatives. Even if the wavefunctions are only one-component, we show that fourindependent solutions, corresponding to those of the Diracequation, exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • P. Jordan, Z. Phys. 80, 285 (1933).

    Google Scholar 

  • P. Jordan and E. P. Wigner, Ann. Math. 35, 29 (1934).

    Google Scholar 

  • A. A. Albert, Ann. Math. 35, 65 (1934).

    Google Scholar 

  • C. Chevalley and R. D. Schafer, Proc. Natl. Acad. Sci. 36, 137 (1950).

    Google Scholar 

  • J. Tits, Proc. Colloq. Utrecht, 135 (1962).

  • H. Freudenthal, Adv. Math. I, 145 (1965).

  • R. D. Schafer, An Introduction to Non-Associative Algebras, Academic Press, New York (1966).

    Google Scholar 

  • F. Gürsey, In Symmetries in Physics (1600–1980): Proceedings of the 1st International Meeting on the History of Scientific Ideas, Seminari d' Història de les Ciènces, Barcelona, Spain, 1987, p. 557.

    Google Scholar 

  • A. Pais, Phys. Rev. Lett. 7, 291 (1961).

    Google Scholar 

  • M. Günaydin and F. Gürsey, J. Math. Phys. 14, 1651 (1973); Phys. Rev. D 9, 3387 (1974).

    Google Scholar 

  • K. Morita, Prog. Theor. Phys. 65, 787 (1981).

    Google Scholar 

  • G. Dixon, Nuovo Cimento B 105, 349 (1990).

    Google Scholar 

  • F. Gürsey, Yale Preprint C00–3075–178 (1978).

  • J. D. Edmonds, Phys. Essays 5, 56 (1992).

    Google Scholar 

  • A. Waldron and G. C. Joshi, Melbourne Preprint UM-P-92/60 (1992).

  • G. C. Lassig and G. C. Joshi, Melbourne Preprint UM-P-95/09 (1995); A. Ritz and G. C. Joshi, Melbourne Preprint UM-P-95/69 (1995).

  • A. J. Davies and G. C. Joshi, J. Math. Phys. 27, 3036 (1986).

    Google Scholar 

  • T. Kugo and P. Townsend, Nucl. Phys. B 221, 357 (1987).

    Google Scholar 

  • B. Julia, Lptens Preprint 82/14 (1982).

  • S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, Oxford (1995).

    Google Scholar 

  • S. L. Adler, Nucl. Phys. B 415, 195 (1994).

    Google Scholar 

  • S. De Leo and P. Rotelli, Phys. Rev. D 45, 575 (1992); Nuovo Cimento B 110, 33 (1995); S. De Leo, Prog. Theor. Phys. 94, 11 (1995); Quaternions for GUTs, Int. J. Theor. Phys., submitted.

    Google Scholar 

  • S. De Leo and P. Rotelli, Prog. Theor. Phys. 92, 917 (1994).

    Google Scholar 

  • S. De Leo and P. Rotelli, Int. J. Mod. Phys. A 10, 4359 (1995); Quaternionic Dirac Lagrangian, Mod. Phys. Lett. A, to be published; Quaternionic electroweak theory, J. Phys. G, submitted.

    Google Scholar 

  • S. L. Adler, Phys. Lett. 221B, 39 (1989).

    Google Scholar 

  • P. Rotelli, Mod. Phys. Lett. A 4, 933 (1989).

    Google Scholar 

  • A. J. Davies, Phys. Rev. D 41, 2628 (1990).

    Google Scholar 

  • S. De Leo, One-component Dirac equation, Int. J. Mod. Phys. A, to be published.

  • R. Penney, Nuovo Cimento B 3, 95 (1971).

    Google Scholar 

  • L. P. Horwitz and L. C. Biedenharn, Ann. Phys. (NY) 157, 432 (1984).

    Google Scholar 

  • J. Rembieliński, J. Phys. A 11, 2323 (1978).

    Google Scholar 

  • A. A. Albert, Ann. Math. 48, 495 (1947).

    Google Scholar 

  • W. R. Hamilton, Elements of Quaternions, Chelsea, New York (1969).

    Google Scholar 

  • J. T. Graves, Mathematical Papers (1843).

  • A. Cayley, Phil. Mag. (Lond) 26, 210 (1845); Collected Mathematical Papers, Cambridge (1889).

    Google Scholar 

  • G. Frobenius, J. Reine Angew. Math. 84, 59 (1878).

    Google Scholar 

  • A. Hurwitz, Nachr. Ges. Wiss. Gött. Math. Phys. Kl., 309; Mathematische Werke, Band II, Zahlentheorie, Algebra und Geometrie, Birkhaüser, Basel (1933), p. 565.

  • R. Bott and J. Milnor, Bull. Am. Math. Soc. 64, 87 (1958).

    Google Scholar 

  • M. Kervaire, Proc. Natl. Acad. Sci. 44, 280 (1958).

    Google Scholar 

  • S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge University Press, Cambridge (to be published).

  • K. Morita, Prog. Theor. Phys. 67, 1860 (1981); 68, 2159 (1982); 70, 1648 (1983); 72, 1056 (1984); 73, 999 (1984); 75, 220 (1985); 90, 219 (1993).

    Google Scholar 

  • S. De Leo, Quaternions and special relativity, J. Math. Phys., to be published.

  • S. Wolfram, Mathematica, Addison-Wesley, Redwood City, California (1991).

    Google Scholar 

  • C. Itzykson and J. B. Zuber, Quantum Field Theory, McGraw-Hill, New York (1985).

    Google Scholar 

  • R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge University Press, Cambridge (1984).

    Google Scholar 

  • S. Adler, Phys. Lett. 332B, 358 (1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leo, S.D., Abdel-Khalek, K. Toward an Octonionic World. International Journal of Theoretical Physics 37, 1945–1985 (1998). https://doi.org/10.1023/A:1026617314160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026617314160

Keywords

Navigation