Skip to main content
Log in

Physical Substantiation of the True-Strainndash;Temperature Diagram for Polycrystalline bcc Metals

  • Published:
Strength of Materials Aims and scope

Abstract

We consider one of the possible versions of physical substantiation of the form of the true-strainndash;temperature diagram for polycrystalline bcc metals from the initial stages of plastic deformation to fracture within the temperature range from completely brittle fracture to the formation of a new grain structure as a result of dynamic recrystallization. We propose a model explaining the character of the temperature dependences of the critical strains corresponding to the transition from one type of dislocation structure to another under continuous loading. For the MChVP molybdenum alloy used as an example, we perform a comparative analysis of the theoretical and experimental temperature dependences of critical strains and demonstrate their good agreement. We also analyze the influence of factors determining the shape and location of the curves of critical strains in the true-strainndash;temperature diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Trefilov, I. D. Gornaya, V. F. Moiseev, and É. P. Pechkovskii, “Strain hardening and the ductile-brittle transition in molybdenum,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 6, 95- 98 (1981).

    Google Scholar 

  2. V. I. Trefilov, V. F. Moiseev, É. P. Pechkovskii, et al., Strain Hardening and Fracture of Polycrystalline Metals [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  3. S. N. Kaverina, V. F. Moiseev, É. P. Pechkovskii, et al., “Temperature- strain boundaries of the limiting structural states in molybdenum for large strains,” Metallofiz. Noveish. Tekhnol., 16, No. 7, 65- 71 (1994).

    Google Scholar 

  4. S. N. Kaverina, V. F. Moiseev, É. P. Pechkovskii, et al., “Structural transition in molybdenum from high-temperature dynamic reset to dynamic recrystallization,” Metallofiz. Noveish. Tekhnol., 18, No. 12, 44- 48 (1996).

    Google Scholar 

  5. D. L. Holt, “Dislocation cell formation in metals,” J. Appl. Phys., 41, No. 8, 3197- 3202 (1970).

    Google Scholar 

  6. V. F. Moiseev and É. P. Pechkovskii, “Temperature dependence of the critical strains in the TST diagram of molybdenum,” in: Electron Microscopy and Strength of Materials [in Russian], Institute of Problems in Materials Science, National Academy of Sciences of Ukraine, Kiev (1999), pp. 81- 87.

    Google Scholar 

  7. A. Seeger, “Mechanism of sliding and hardening in face-centered cubic and hexagonal close-packed metals,” in: Dislocations and Mechanical Properties of Crystals [Russian translation], Inostr. Lit., Moscow (1960), pp. 179- 268.

    Google Scholar 

  8. H. Conrad, “On the mechanism of yielding and flow in iron,” J. Iron Steel Inst., 198, No. 4, 364- 375 (1961).

    Google Scholar 

  9. P. Haasen, “Mechanical properties of solid solutions and intermetallic compounds,” in: R. W. Cahn (Ed.), Physical Metallurgy, Vol. 3: Defects of Crystal Structure. Mechanical Properties of Metals and Alloys [Russian translation], Mir, Moscow (1968), pp. 248- 326.

    Google Scholar 

  10. V. I. Trefilov, “Role of the type of interatomic bonds in the process of brittle fracture,” in: Physical Nature of the Brittle Fracture of Metals [in Russian], Naukova Dumka, Kiev (1965), pp. 22- 58.

    Google Scholar 

  11. Yu. V. Mil'man and V. I. Trefilov, “Physical nature of the temperature dependence of the yield limit,” in: Mechanisms of Fracture of Metals [in Russian], Naukova Dumka, Kiev (1966), pp. 59- 76.

    Google Scholar 

  12. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Foundations of Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  13. V. A. Borisenko, Hardness and Strength of Refractory Materials at High Temperatures [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  14. É. P. Pechkovskii, A. V. Perepelkin, and S. A. Firstov, “Thermoactivation analysis of the temperature dependence of the true elasticity limit for molybdenum,” Metallofiz. Noveish. Tekhnol., 20, No. 4, 67- 75 (1998).

    Google Scholar 

  15. V. I. Trefilov, I. D. Gornaya, V. F. Moiseev, and É. P. Pechkovskii, “Dynamic reset in the process of active deformation,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 70- 75 (1988).

    Google Scholar 

  16. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Clarendon, Oxford (1953).

    Google Scholar 

  17. F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials, Addison-Wesley, Reading, Mass. (1966).

    Google Scholar 

  18. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  19. P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Physical Foundations of Plastic Deformation [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechkovskii, E.P. Physical Substantiation of the True-Strainndash;Temperature Diagram for Polycrystalline bcc Metals. Strength of Materials 32, 381–390 (2000). https://doi.org/10.1023/A:1026617020771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026617020771

Keywords

Navigation