Skip to main content
Log in

Ferroelectric Thin Films and Multilayer Structures Based on Them

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

A brief review is presented of the results of recent research into ferroelectric films and their multilayer structures. The main attention is paid to theoretical calculation of the physical properties that characterize ferroelectric materials (electric polarization, phase transition temperature, dielectric response) in thick and thin films and their multilayer structures. Within the phenomenological theory it is shown that the main reason for a decrease in film symmetry is internal mechanical stress connected with the mismatch in lattice constants, difference in thermal expansion coefficients of the substrate and film, and also growth imperfections. These stresses lead to a change (decrease or increase) in the para-ferroelectric transition temperature that is actually observed in thick films. In thin films, where it is necessary to consider polarization gradients, a ferroelectric transition develops whose temperature depends on film thickness (thickness induced phase transition). The polarization and dielectric permittivity of films and their multilayer structures are calculated. It is demonstrated that permittivity becomes infinitely great close to the thickness induced phase transition temperature. The theory fits well with the recently observed huge dielectric permittivity and its temperature dependence in a multilayer structure of thin films of PbTiO3 and Pb0.72La0.28TiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. T. Grahn, “Semiconductor superlattices,” in: Growth and Electronic Properties, World Scientific, Singapore (1995).

    Google Scholar 

  2. T. Shinjo and T. Takada, “Metallic superlattices,” in: Artificially Structured Materials, Elsevier, New York (1987).

    Google Scholar 

  3. M. G. Cottam, Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices, World Scientific, Singapore (1994).

    Google Scholar 

  4. I. Bozovic, Superconducting Superlattices and Multilayers, Bellingham (1994).

  5. R. Ramesh (ed.), Thin Film Ferroelectric Materials and Devices, Kluwer, Boston (1997).

    Google Scholar 

  6. M. F. Deigen and M. D. Glinchuk, Surf. Sci., 3, 243 (1965).

    Google Scholar 

  7. B. K. Ridley, O. Al-Dossary, N. C. Konstantinu, and M. Babiker, Phys. Rev. B, 50, 11701 (1994).

    Google Scholar 

  8. A. Deineka, M. D. Glinchuk, L. Jastrabik, et al., Phys. Stat. Solidi (a), 175, 443 (1999).

    Google Scholar 

  9. Y. Kim, R. A. Gerhardt, and A. Erbil, Phys. Rev. B, 55, 8766 (1997).

    Google Scholar 

  10. J. C. Jiang, X. Q. Pan, W. Tian, et al., Appl. Phys. Lett, 24, 2851 (1999).

    Google Scholar 

  11. E. D. Specht, H.-M. Christen, D. P. Norton, and L. A. Boatner, Phys. Rev. Lett., 80, 4317 (1998).

    Google Scholar 

  12. F. Le Marrec, R. Farhi, M. El. Marssi, et al., Phys. Rev. B., 61, 6447 (2000).

    Google Scholar 

  13. G. A. Rossetti, L. E. Cross Jr., and K. Kushida, Appl. Phys. Lett, 59, 2524 (1991).

    Google Scholar 

  14. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998).

    Google Scholar 

  15. B. D. Qu, W. L. Zhong, and R. H. Prince, Phys. Rev. B, 55, 112 (1997).

    Google Scholar 

  16. J. S. Speck and W. Pompe, J. Appl. Phys., 76, 466 (1994).

    Google Scholar 

  17. M. D. Glinchuk, V. A. Stephanovich, and E. A. Eliseev, Cond-mat/00042258.

  18. I. N. Bronshtein and K. A. Semendyaev, Mathematics Handbook, Tyubner, Leipzig (1979).

    Google Scholar 

  19. Y. Ishibashi, H. Orihara, and D. R. Tilley, J. Phys. Soc. Jpn., 3292 (1998).

  20. M. Abramovich and A. Stegun, Handbook of Mathematical Functions [in Russian], Moscow (1978).

  21. E. Whittaker and G. Watson, Course in Contemporary Analysis, Cambridge (1952).

  22. Y. G. Wang, W. L. Zhong, and P. L. Zhang, Phys. Rev. B, 51, 5311 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinchuk, M.D. Ferroelectric Thin Films and Multilayer Structures Based on Them. Powder Metallurgy and Metal Ceramics 39, 345–354 (2000). https://doi.org/10.1023/A:1026609405731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026609405731

Navigation