Skip to main content
Log in

Soler's Theorem and Characterization of Inner Product Spaces

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using Soler's result, we show that the existenceof at least one finitely additive probability measure onthe system of all orthogonally closed subspaces of Swhich is concentrated on a one-dimensional subspace of E can imply that E is a real,complex, or quaternionic Hilbert space. In addition,using the concept of test spaces of Foulis and Randalland introducing various systems of subspaces of E , we give some characterizations of inner productspaces which imply that E is a real, complex, orquaternionic Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Amemiya, I., and Araki, H. (1966/67). A remark on Piron's paper, Publications of the Research Institute for Mathematical Sciences, Series A, 2, 423–427.

    Google Scholar 

  • Dvurečenskij, A. (1993). Gleason's Theorem and its Applications, Kluwer, Dordrecht, and Ister Science Press, Bratislava.

    Google Scholar 

  • Dvurečenskij, A. (1996). Test spaces and characterizations of quadratic spaces, International Journal of Theoretical Physics, 35, 2093–2105.

    Google Scholar 

  • Dvurečenskij, A. (1997). A measure-theoretic characterization of inner product spaces, Tatra Mountains Mathematical Publications, No. 10.

  • Foulis, D. J., and Randall, C. H. (1972). Operational statistics. I. Basic concepts, Journal of Mathematical Physics, 13, 1667–1675.

    Google Scholar 

  • Gross, H. (1990). Hilbert lattices: New results and unsolved problems, Foundations of Physics, 20, 529–559.

    Google Scholar 

  • Hamhalter, J., and Pták, J. (1987). A completeness criterion for inner product spaces, Bulletin of the London Mathematical Society, 19, 259–263.

    Google Scholar 

  • Keller, H. A. (1980). Ein nicht-klassischer Hilbertischen Raum, Mathematische Zeitschrift, 172, 41–49.

    Google Scholar 

  • Kolmogorov, A. N. (1930). Grundbegriffe der Wahrscheinlichkeitsrechnu ng, Berlin.

  • Mackey, G. W. (1963). The Mathematical Foundations of Quantum Mechanics, Benjamin, Reading, Massachusetts.

    Google Scholar 

  • Maeda, F., and Maeda, S. (1970). Theory of Symmetric Lattices, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Morash, R. P. (1973). Angle bisection and orthoautomorp hisms in Hilbert lattices, Canadian Journal of Mathematics, 25, 261–271.

    Google Scholar 

  • Piron, C. (1976). Foundations of Quantum Physics, Benjamin, Reading, Massachusetts.

    Google Scholar 

  • Piziak, R. (1992). Orthostructure s from sesquilinear forms. A prime, International Journal of Theoretical Physics, 31, 871–879.

    Google Scholar 

  • Pulmannová, S. (1996). Remarks on orthosymmetric ortholattices and Baer*-rings, in Proceedings of the 5th IWAA, to appear.

  • Solèr, M. P. (1995). Characterization of Hilbert spaces by orthomodular spaces, Communications in Algebra, 23, 219–243.

    Google Scholar 

  • Varadarajan, V. S. (1968). Geometry of Quantum Theory, Vol. 1, van Nostrand, Princeton, New Jersey.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvurecenskij, A. Soler's Theorem and Characterization of Inner Product Spaces. International Journal of Theoretical Physics 37, 23–29 (1998). https://doi.org/10.1023/A:1026600919901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026600919901

Keywords

Navigation