Skip to main content
Log in

Plant Tubulins: a Melting Pot for Basic Questions and Promising Applications

  • Published:
Transgenic Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anthony RG and Hussey PJ (1998) Suppression of endogenous α-and β-tubulin synthesis in transgenic maize calli overexpressing α-and β-tubulins. Plant J 16: 297–304.

    Google Scholar 

  • Anthony RG, Waldin TR, Ray JA, Bright and Hussey PJ (1998) Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature 393: 260–263.

    Google Scholar 

  • Anthony RG and Hussey PJ (1999a) Dinitroaniline herbicide resistance and the microtubule cytoskeleton. Trends Plant Sci 4: 112–116.

    Google Scholar 

  • Anthony RG and Hussey PJ (1999b) Double mutation in Eleusine indica α-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothiamidate herbicides. Plant J 18: 669–674.

    Google Scholar 

  • Anthony RG, Reichelt S and Hussey PJ (1999) Dinitroaniline herbicide-resistant transgenic tobacco plants generated by cooverexpression of a mutant α-tubulin and a β-tubulin. Nat Biotechnol 17: 712–716

    Google Scholar 

  • Belmont LD and Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84: 623–631.

    Google Scholar 

  • Bokros CL, Hugdahl JD, Blumenthal SSD and Morejohn LC (1996) Proteolytic analysis of polymerized maize tubulin: regulation of microtubule stability to low temperature and Ca2+ by the carboxyl terminus of α-tubulin. Plant Cell Environ 19: 539–548.

    Google Scholar 

  • Bonfante P, Bergero R, Uribe X, Romera C, Rigau J and Puigdomenech P (1996) Transcriptional activation of a maize α-tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant J 9: 737–743.

    Google Scholar 

  • Burns RG and Farrell KW (1996) Getting to the heart of α-tubulin. Trends Cell Biol 6: 297–303.

    Google Scholar 

  • Bustos MM, Guiltinan MJ, Cyr RJ, Ahdoot D and Fosket DE (1989) Light regulation of α-tubulin gene expression during internode development in soybean (Glycine max Merr.) Plant Physiol 91: 1157–1161.

    Google Scholar 

  • Carnero-Diaz E, Martin F and Tagu D (1996) Eucalypt α-tubulin: cDNA cloning and increased level of transcripts in ectomycorrhizal root system. Plant Mol Biol 31: 905–910.

    Google Scholar 

  • Carpenter JL, Ploense SE, Snustad DP and Silflow CD (1992) Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 4: 557–571.

    Google Scholar 

  • Carpenter JL, Kopczak SD, Snustad DP and Silflow CD (1993) Semi-constitutive expression of an Arabidopsis thaliana α-tubulin gene. Plant Mol Biol 21: 937–942.

    Google Scholar 

  • Chan J, Jensen CG, Jensen LC, Bush M and Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96: 14931–14936.

    Google Scholar 

  • Chu B, Snustad DP and Carter JV (1993) Alteration of β-tubulin expression during low-temperature exposure in leaves of Arabidopsis thaliana. Plant Physiol 103: 371–377.

    Google Scholar 

  • Chu B, Wilson TJ, McCune-Zierath C, Snustad DP and Carter JV (1998) Two α-tubulin genes, TUB1 and TUB8, of Arabidopsis exhibit largely nonoverlapping patterns of expression. Plant Mol Biol 37: 785–790.

    Google Scholar 

  • Cleveland DW, Pittinger MF and Feramisco JR (1983) Elevation of tubulin levels by microinjection suppresses new tubulin synthesis. Nature 305: 738–740.

    Google Scholar 

  • Cleveland DW (1988) Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. Trends Biochem Sci 13: 339–343.

    Google Scholar 

  • Davis A, Sage CR, Dougherty CA and Farrell KW (1994) Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of β-tubulin. Science 264: 839–842.

    Google Scholar 

  • Deng WL, Haas NA and Snustad DP (1996) Characterization of naturally-occurring antisense RNAs of the Tua3 gene in Arabidopsis. Plant Physiol 111: 571.

    Google Scholar 

  • Dixon DC, Seagull RW and Triplett BA (1994) Changes in the accumulation of α-and β-tubulin isotypes during cotton fiber development. Plant Physiol 105: 1347–1353.

    Google Scholar 

  • Dolfini S, Consonni G, Mereghetti M and Tonelli C (1993) Antiparallel expression of the sense and antisense transcripts of maize α-tubulin genes. Mol Gen Genet 241: 161–169.

    Google Scholar 

  • Ellis JR, Taylor R and Hussey PJ (1994) Molecular modeling indicates that two chemically distinct classes of anti-mitotic herbicide bind to the same receptor site(s). Plant Physiol 105: 15–18.

    Google Scholar 

  • Fosket DE and Morejohn LC (1992) Structural and functional organization of tubulin. Annu Rev Plant Physiol 43: 201–240.

    Google Scholar 

  • Gay DA, Sisodia SS, and Cleveland DW (1989) Autoregulatory control of β-tubulin mRNA stability is linked to translation elongation. Proc Natl Acad Sci USA 86: 5763–5767.

    Google Scholar 

  • Gianì S and Breviario D (1996) Rice β-tubulin mRNA levels are modulated during flower development and in response to external stimuli. Plant Sci 116: 147–157.

    Google Scholar 

  • Gianì S, Qin X and Breviario D (1998) In rice, oryzalin and abscicic acid differentially affect tubulin mRNA and protein levels. Planta 205: 334–341.

    Google Scholar 

  • Giddings TH and Staehelin LA (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed.) The Cytoskeletal Basis of Plant Growth and Form (pp. 85–99) Academic Press, London.

    Google Scholar 

  • Goddard GH, Wick SM, Silflow CD and Snustad DP (1994) Microtubule components of the plant cell cytoskeleton. Plant Physiol 104: 1–6.

    Google Scholar 

  • Gonzales-Garay ML and Cabral F (1996) α-tubulin limits its own synthesis: evidence for a mechanism involving translation repression. J Cell Biol 135: 1525–1534.

    Google Scholar 

  • Gonzales-Garay ML, Chang L, Blade K, Menick Dr and Cabral F (1999) A β-tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance. J Biol Chem 34: 23875–23882.

    Google Scholar 

  • Han I, Jongewaard I and Fosket DE (1991) Limited expression of a diverged β-tubulin gene during soybean (Glycine max Merr.) development. Plant Mol Biol 16: 225–234.

    Google Scholar 

  • Heinlein M, Ebel BL, Padgett HS and Beachey RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270: 1983–1985.

    Google Scholar 

  • Hoffman JC and Vaughn KC (1994) Mitotic disrupters act by a single mechanism but vary in efficacy. Protoplasma 179: 16–25.

    Google Scholar 

  • Holt JS, Powles SB and Holtum JAM (1993) Mechanisms and agronomic aspects of herbicide resistance. Annu Rev Plant Physiol 44: 203–229.

    Google Scholar 

  • Huang RF and Lloyd CW(1999) Gibberellic acid stabilises microtubules in maize suspension cells to cold and stimulates acetylation of α-tubulin. FEBS LETT 443: 317–320.

    Google Scholar 

  • Hugdahl JD and Morejohn LC (1993) Rapid and reversible high-affinity binding of the dinitroaniline herbicide oryzalin to tubulin from Zea mays L. Plant Physiol 102: 725–740.

    Google Scholar 

  • Hussey PJ, Haas N, Hunsperger J, Larkin J, Snustad DP and Silflow CD (1990) The β-tubulin gene family in Zea mays: two differentially expressed β-tubulin genes. Plant Mol Biol 15: 957–972.

    Google Scholar 

  • James SW, Silflow CD, Stroom P and Lefebvre PA (1993) A mutation in the α1-tubulin gene of Chlamydomonas reinhardtii confers resistance to antimicrotubule herbicides. J Cell Sci 106: 209–218.

    Google Scholar 

  • Joyce CM, Villemur R, Snustad DP and Silflow CD (1992) Change in isotype expression along the developmental axis of seedling root. J Mol Biol 227: 97–107.

    Google Scholar 

  • Katz W, Weinstein B and Solomon F (1990) Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number. Mol Cell Biol 10: 5286–5294.

    Google Scholar 

  • Kerr GP and Carter JV (1990) Tubulin isotypes in rye roots are altered during cold acclimation. Plant Physiol 93: 83–88.

    Google Scholar 

  • Kingston DGI (1994) Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol 12: 222–227.

    Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T and Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11: 525–537.

    Google Scholar 

  • Kogα-Ban Y, Niki T, Nagamura Y, Sasaki T and Minobe Y (1995) cDNA sequences of three kinds of β-tubulins from rice. DNA Res 2: 21–26.

    Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD and Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed α-tubulin genes. Plant Cell 4: 539–547.

    Google Scholar 

  • Kumagai F, Hasezawa S and Nagata T (1999) Putative involvement of a 49 kDa protein in microtubule assembly in vitro. Eur J Cell Biol 78: 109–116.

    Google Scholar 

  • Leu W, Cao X, Wilson TJ, Snustad DP and Chua NH (1995) Phytochrome A and Phytochrome B mediate the hypocotyl-specific downregulation of Tub1 by light in Arabidopsis. Plant Cell 7: 2187–2196.

    Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA and Snustad DP (1994) γ-tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6: 303–314.

    Google Scholar 

  • Ludwig SR, Oppenheimer DG, Silflow CD and Snustad DP (1988) The α1-tubulin gene of Arabidopsis thaliana: primary structure and preferential expression in flowers. Plant Mol Biol 10: 311–321.

    Google Scholar 

  • Lukowitz W, Mayer U and Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84: 61–71.

    Google Scholar 

  • Mayer U, Buttner G and Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the GNOM gene. Development 117: 149–162.

    Google Scholar 

  • Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, et al. (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22: 413–420.

    Google Scholar 

  • Mendu N and Silflow CD (1993) Elevated levels of tubulin transcripts accompany the GA3-induced elongation of oat internode segments. Plant Cell Physiol 34: 973–983.

    Google Scholar 

  • Montoliu L, Rigau J and Puigdomenech P (1989) A tandem of α-tubulin genes preferentially expressed in radicular tissues from Zea mays. Plant Mol Biol 14: 1–15.

    Google Scholar 

  • Monzo M, Rosell R, Sanchez JJ, Lee JS, O'Brate A, Gonzales-Larriba JL, Alberola V, Lorenzo JC, Nunez L, Ro JY and Martin C (1999) Paclitaxel resistance in non-small-cell lung cancer associated with β-tubulin gene mutations. J Clin Oncol 17: 1786–1793.

    Google Scholar 

  • Moore RC, Zhang M, Cassimeris L and Cyr RJ (1997) In vitro assembled plant microtubules exhibit a high state of dynamic instability. Cell Motility and the Cytoskeleton 38: 278–286.

    Google Scholar 

  • Morejohn LC, Bureau TE, Mol-Bajer J, Bajer AS and Fosket DE (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172: 252–264.

    Google Scholar 

  • Moreno FJ, Bagnat M, Lim F and Avila J (1999) OP18/stathmin binds near the C-terminus of tubulin and facilitates GTP binding. Eur J Biochem 262: 557–562.

    Google Scholar 

  • Mu JH, Bollon AP and Sidhu RS (1999) Analysis of β-tubulin cDNAs from taxol-resistant Pestalotiopsis microspora and taxol-sensitive Pythium ultimum and comparison of the taxol-binding properties of their products. Mol Gen Genet 262: 857–868.

    Google Scholar 

  • Murthy JV, Kim H-H, Hanesworth VR, Hugdahl JD and Morejohn LC (1994) Competitive inhibition of high-affinity oryzalin binding to plant tubulin by the phosphoric amide herbicide amiprophos-methyl. Plant Physiol 105: 309–320.

    Google Scholar 

  • Nick P, Yatou O, Furuya M and Lambert AM (1994) Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC. Plant J 6: 651–663.

    Google Scholar 

  • Nick P (1998) Signalling to the microtubular cytoskeleton in plants. Int Rev Cytol 184: 33–80.

    Google Scholar 

  • Niini SS, Tarkka MT and Raudaskoski M (1996) Tubulin and actin protein patterns in Scots pine (Pinus sylvestris) roots and developing ectomycorrhiza with Suillus bovinus. Physiol Plant 96: 186–192.

    Google Scholar 

  • Nogales E, Wolf SG and Downing KH (1998) Structure of the ab tubulin dimer by electron crystallography. Nature 391: 199–206.

    Google Scholar 

  • Oppenheimer DG (1998) Genetics of plant cell shape. Curr Opin Plant Biol 1: 520–524.

    Google Scholar 

  • Qin X, Gianì S and Breviario D (1997) Molecular cloning of three rice α-tubulin isotypes: differential expression in tissues and during flower development. Biochem Biophys Acta 1354: 19–23.

    Google Scholar 

  • Rao S, He L, Chakravarty S, Ojima I, Orr GA and Horwitz SB (1999) Characterization of the taxol binding site on the microtubule. Identification of arg (282) in β-tubulin as the site of photoincorporation of a 7-benzophenone analogue of taxol. J Biol Chem 274: 37990–37994.

    Google Scholar 

  • Schibler MJ and Huang B (1991) The colR4 and colR15 β-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J Cell Biol 113: 605–614.

    Google Scholar 

  • Shevell DE, Leu WM, Gillmor CS, Xia GX, Feldmann KA and Chua NH (1994) Emb30 is essential for normal cell division, cell expansion and cell adhesion in Arabidopsis, and encodes a protein that has similarity to Sec7. Cell 77: 1051–1062.

    Google Scholar 

  • Smertenko A, Blume Y, Viklicky, V, Opatrny Z and Dráber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201: 349–358.

    Google Scholar 

  • Snustad DP, Haas NA, Kopczak SD and Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed β-tubulin genes. Plant Cell 4: 549–556.

    Google Scholar 

  • Takahashi M, Matsumoto S, Iwasaki S and Yahara I (1990) Molecular basis for determining the sensitivity of eukaryotes to the antimitotic drug rhizoxin. Mol Gen Genet 222: 169–175.

    Google Scholar 

  • Thion L, Mazars C, Nacry P, Bouchez D, Moreu M, Ranjeva R, et al. (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J 13: 603–610.

    Google Scholar 

  • Tian G, Huang Y, Rommelaere H, Vendekerckove J, Ampe C and Cowan NJ (1996) Pathway leading to correctly folded β-tubulin. Cell 86: 287–296.

    Google Scholar 

  • Tian G, Bhamidipati A, Cowan NJ and Lewis SA (1999) Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the α/ β tubulin heterodimer. J Biol Chem 274: 24054–24058.

    Google Scholar 

  • Tonoike H, Han I, Jongewaard I, Doyle M, Guiltinan M and Fosket DE (1994) Hypocotyl expression and light downregulation of the soybean tubulin gene, tubB1. Plant J 5: 343–351.

    Google Scholar 

  • Uribe X, Torres MA, Capellades M, Puigdomenech P and Rigau J (1998) Maize α-tubulin genes are expressed according to specific pattern of cell differentiation. Plant Mol Biol 37: 1069–1078.

    Google Scholar 

  • Vaishampayan U, Parchment RE, Jasti BR and Hussain M (1999) Taxanes: an overview of the pharmacokinetics and pharmacodynamics. Urology 54: 22–29.

    Google Scholar 

  • Villemur R, Joyce CM, Haas NA, Goddard RH, Kopczak SD, Hussey PJ, et al. (1992) α-tubulin gene family of maize (Zea mays L.): evidence for two ancient α-tubulin genes in plants. J Mol Biol 227: 81–96.

    Google Scholar 

  • Villemur R, Haas NA, Joyce CM, Snustad DP and Silflow CD (1994) Characterization of four new β-tubulin genes and their expression during male flower development in maize (Zea mays L.). Plant Mol Biol 24: 295–315.

    Google Scholar 

  • Wall ME (1998) Camptothecin and taxol: discovery to clinic. Med Res Rev 18: 299–314.

    Google Scholar 

  • Whittaker DJ and Triplett BA (1999) Gene-specific changes in α-tubulin transcript accumulation in developing cotton fibers. Plant Physiol 121: 181–188.

    Google Scholar 

  • Yamamoto E, Zeng L and Baird WV (1998) α-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. Plant Cell 10: 297–308.

    Google Scholar 

  • Yamamoto E and Baird WV (1999) Molecular characterization of four β-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica. Plant Mol Biol 39: 45–61.

    Google Scholar 

  • Yoshimura T, Demura T, Igarashi M and Fukuda H (1996) Differential expression of three genes for different β-tubulin isotypes during the initial culture of Zinnia mesophyll cells that divide and differentiate into tracheary elements. Plant Cell Physiol 37: 1167–1176.

    Google Scholar 

  • Zabala JC, Fontalba A and Avila J (1996) Tubulin folding is altered by mutations in a putative GTP-binding motif. J Cell Sci 109: 1471–1478.

    Google Scholar 

  • Zeng L and Baird WV (1997) Genetic basis of dinitroaniline herbicide resistance in a highly resistant biotype of goosegrass (Eleusine indica). J Heredity 88: 427–432.

    Google Scholar 

  • Zeng L and Baird WV (1999) Inheritance of resistance to antimicrotubule dinitroaniline herbicides in an ‘intermediate’ resistant biotype of Eleusine indica (Poaceae). Am J Bot 86: 940–947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breviario, D., Nick, P. Plant Tubulins: a Melting Pot for Basic Questions and Promising Applications. Transgenic Res 9, 383–393 (2000). https://doi.org/10.1023/A:1026598710430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026598710430

Navigation