Journal of Applied Electrochemistry

, Volume 30, Issue 11, pp 1277–1283 | Cite as

In situ controlled electrochemical promotion of catalyst surfaces: Pd-catalysed ethylene oxidation

  • K. Yiokari
  • S. Bebelis
Article

Abstract

The catalytic activity of polycrystalline Pd films deposited on 8 mol% Y2O3-stabilized–ZrO2 (YSZ), an O2−-conductor, can be altered reversibly by varying the potential of the Pd catalyst film via the effect of nonfaradaic electrochemical modification of catalytic activity (NEMCA) or electrochemical promotion. The complete oxidation of ethylene was investigated as a model reaction in the temperature range 290–360 °C and atmospheric total pressure. The rate of C2H4 oxidation can be reversibly enhanced by up to 45% by supplying O2− to the catalyst via positive current application. The steady-state rate change is typically 103–104 times larger than the steady-state rate I/2F of electrochemical supply or removal of promoting oxide ions. The observed behaviour is discussed on the basis of previous NEMCA studies and the mechanism of the reaction.

electrochemical promotion ethylene oxidation NEMCA effect palladium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (Lond.) 343 (1990) 625.Google Scholar
  2. 2.
    C.G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem. 92 (1988) 5083.Google Scholar
  3. 3.
    J. Pritchard, Nature (Lond.) 343 (1990) 592.Google Scholar
  4. 4.
    M. Stoukides and C.G. Vayenas, J. Catal. 70 (1981) 137.Google Scholar
  5. 5.
    T.I. Politova, V.V. Gal'vita, V.D. Belyaev and V.A. Sobyanin, Catal. Lett. 44 (1997) 75.Google Scholar
  6. 6.
    C.A. Cavalca and G.L. Haller, J. Catal. 177 (1998) 389.Google Scholar
  7. 7.
    S. Tracey, A. Palermo, J.P.H. Vazquez and R.M. Lambert, J. Catal. 179 (1998) 231.Google Scholar
  8. 8.
    P. Chiang, D. Eng and M. Stoukides, J. Catal. 139 (1993) 683.Google Scholar
  9. 9.
    J. Nicole and Ch. Comninellis, J. Appl. Electrochem. 28 (1998) 223.Google Scholar
  10. 10.
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today 11 (1992) 303 and references therein.Google Scholar
  11. 11.
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S.G. Neophytides, The Electrochemical Activation of Catalytic Reactions, in J.O'M. Bockris, B.E. Conway and E. White (Eds), 'Modern Aspects of Electrochemistry' Vol. 29 (Plenum, New York, 1996), pp. 57-202 and references therein.Google Scholar
  12. 12.
    C. Pliangos, I.V. Yentekakis, X. Verykios and C.G. Vayenas, J. Catal. 154 (1995) 124.Google Scholar
  13. 13.
    S. Bebelis and C.G. Vayenas, J. Catal. 118 (1989) 125.Google Scholar
  14. 14.
    A. Frennet and J.-M. Bastin (Eds), 'Catalysis and Automotive Pollution Control III', in 'studies in Surface Science and Catalysis', Vol. 96 (Elsevier Science, Amsterdam, 1995).Google Scholar
  15. 15.
    A. Schwartz, L.L. Holbrook and H. Wise, J. Catal. 21 (1971) 199.Google Scholar
  16. 16.
    V.G. Papadakis, C.A. Pliangos, I.V. Yentekakis, X.E. Verykios and C.G. Vayenas, Catal. Today 29 (1996) 71.Google Scholar
  17. 17.
    E.M. Stuve and R.J. Madix, Surf. Sci. 160 (1985) 293.Google Scholar
  18. 18.
    E.M. Stuve, R.J. Madix and C.R. Brundle, Surf. Sci. 152/153 (1985) 532.Google Scholar
  19. 19.
    Ch. Karavasilis, S. Bebelis and C.G. Vayenas, J. Catal. 160 (1996) 190.Google Scholar
  20. 20.
    J.R. Anderson and K.C. Pratt, 'Introduction to Characterization and Testing of Catalysts' (Academic Press, New York, 1985).Google Scholar
  21. 21.
    R.F. Hicks, Q.-J. Yen and A.T. Bell, J. Catal. 89 (1984) 498.Google Scholar
  22. 22.
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem. 97 (1993) 8845.Google Scholar
  23. 23.
    C. Athanasiou, G. Karagiannakis, S. Zisekas and M. Stoukides, Solid State Ionics (special issue dedicated to SSI-12), in press (2000).Google Scholar
  24. 24.
    S. Ladas, S. Bebelis and C.G. Vayenas, Surf. Sci. 251/252 (1991) 1062.Google Scholar
  25. 25.
    H. Conrad, G. Ertl, J. Küppers and E.E. Latta, Surf. Sci. 65 (1977) 245.Google Scholar
  26. 26.
    W.T. Tysoe, G.L. Nyberg and R.M. Lambert, J. Phys. Chem. 88 (1984) 1960.Google Scholar
  27. 27.
    M. Boudart, J. Am. Chem. Soc. 74 (1952) 3556.Google Scholar
  28. 28.
    G. Pacchioni, F. Illas, S. Neophytides and C.G. Vayenas, J. Phys. Chem. 100 (1996) 16653.Google Scholar
  29. 29.
    S. Neophytides and C.G. Vayenas, J. Phys. Chem. 99 (1995) 17063.Google Scholar
  30. 30.
    A.D. Frantzis, S. Bebelis and C.G. Vayenas, Solid State Ionics (special issue dedicated to SSI-12), in press (2000).Google Scholar
  31. 31.
    M.P. Kiskinova, Poisoning and Promotion in Catalysis based on Surface Science Concepts and Experiments, in B. Delmon and J.T. Yates (Eds), 'studies in Surface Science and Catalysis', Vol. 70 (Elsevier Science B.V., Amsterdam, 1992) pp. 140-142.Google Scholar
  32. 32.
    M. Peuckert, J. Phys. Chem. 89 (1985) 2481.Google Scholar
  33. 33.
    P. Légaré, L. Hilaire, G. Maire, G. Krill and A. Amamou, Surf. Sci. 107 (1981) 533.Google Scholar
  34. 34.
    A.C. Kaloyiannis, C.A. Pliangos, D.T. Tsiplakides, I.V. Yentekakis, S.G. Neophytides, S. Bebelis and C.G. Vayenas, Ionics 1 (1995) 414.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • K. Yiokari
    • 1
  • S. Bebelis
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations