Skip to main content
Log in

Absolute and Convective Instability of Tangential Discontinuities in Viscous Fluids: Application to Heliopause

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The stability of the heliopause, which is a tangential discontinuity separating the flow of the solar wind plasma compressed at the termination shock, from the flow of the insterstellar plasma compressed at the bow shock, is discussed. A brief review of the normal mode analysis is given. The recent results of the study of the absolute and convective instability of a tangential discontinuity in an incompressible plasma, viscous at one side of the discontinuity, and ideal at the other side, are presented. This equilibrium configuration can be considered as a crude model of the flow near the heliopause in its near-flank regions, where the flow is essentially subsonic. The obtained results suggest that the near flanks of the heliopause are only convectively unstable. The relation of these results with results of recent numerical investigations of the absolute and convective instability of the heliopause are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baranov, V.B.: 1990, Gas-dynamics of the solar-wind interaction with the interstellar-medium, Space Sci.Rev. 52, 89–120.

    Article  ADS  Google Scholar 

  • Baranov, V.B. and Malama, Y.G.: 1993, Model of the solar wind interaction with the local interstellar medium: Numerical solution of the self-consistent problem, J.Geophys.Res. 98 (A9), 15157–15163.

    Article  ADS  Google Scholar 

  • Baranov, V.B., Ermakov, M.K. and Lebedev, M.G.: 1981, A three-component model of solar wind– interstellar medium interaction: Some numerical results, Sov.Astron.Lett. 7 (3), 206–209 (translated from Russian).

    ADS  Google Scholar 

  • Baranov, V.B., Fahr, H.J. and Ruderman, M.S.: 1992, Investigation of macroscopic instabilities at the heliopause boundary surface, Astron Astrophys. 261, 341–347.

    ADS  Google Scholar 

  • Baranov, V.B., Krasnobaev, K.V. and Kulikovski, A.G.: 1970, A model of the interaction of the solar wind with the interstellar medium, Sov.Phys.Dokl. 15, 791–793 (translated from Russian).

    ADS  Google Scholar 

  • Baranov, V.B., Krasnobaev, K.V. and Ruderman, M.S.: 1976, On the model of the solar wind– interstellar medium interaction with two shock waves, Astrophys.Space Sci. 41, 481–490.

    Article  ADS  Google Scholar 

  • Baranov, V.B., Lebedev, M.G. and Ruderman, M.S.: 1979, The structure of the region of solar wind – interstellar medium interaction and its influence on H atom penetration in solar wind, Astrophys.Space Sci. 66, 441–451.

    Article  ADS  Google Scholar 

  • Belov, N.A.: 1997a, Instability of a tangential discontinuity in a plane flow with a stagnation point, Fluid Dyn. 32, 219–222 (translated from Russian).

    MATH  MathSciNet  Google Scholar 

  • Belov, N.A.: 1997b, Instability of a tangential discontinuity in an axisymmetric flow with a stagnation point, Fluid Dyn. 32, 780–783 (translated from Russian).

    MATH  MathSciNet  Google Scholar 

  • Belov, N.A. and Myasnikov, A.V.: 1999, Instability of a contact surface separating two hypersonic source flows, Fluid Dyn. 34, 379–387 (translated from Russian).

    MATH  ADS  Google Scholar 

  • Bender, C.M. and Orszag, S.A.: 1987, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Auckland.

  • Braginskii, S.I.: 1965, Transport processes in plasmas, in: M.A. Leontovich (ed.), Reviews of Plasma Physics 1, 205–309, Consultant Bureau, New York.

    Google Scholar 

  • Briggs, R.J.: 1964, Electron-stream interaction with plasmas, MIT Press.

  • Chalov, S.V.: 1996, On the Kelvin-Helmholtz instability of the nose part of the heliopause. 1. Axisymmetric disturbances, Astron Astrophys. 308, 995–1000.

    ADS  Google Scholar 

  • Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon, Oxford.

  • Fahr, H.J., Neutsch, W., Grzedzielski, S., Macek, W. and Ratkiewicz, R.: 1986, Plasma transport across the heliopause, Space Sci.Rev. 43, 329–381.

    Article  ADS  Google Scholar 

  • Fejer, J.A.: 1964, Hydromagnetic stability at a fluid velocity discontinuity between compressible fluids, Phys.Fluids 7, 499–503.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kikina, N.G.: 1967, Effect of viscosity on the instability of tangential disturbances in an incompressible medium, Sov.Phys.– Acoustics 13, 184–187 (translated from Russian).

    Google Scholar 

  • Landau, L.D.: 1944, Ob ustoichivosti tangentsial'nyh razryvov v szhimaemoi zhidkosti, Dokl.Akad.Nauk USSR 44, 151–153 (in Russian).

    Google Scholar 

  • Myasnikov, A.V. and Belov, N.A.: 2000, On the stability of contact discontinuity separating two hypersonic sources, this issue.

  • Myasnikov, A.V. and Zhekov, S.A.: 1991, Colliding stellar winds in WR+O binary systems, Astrophys.Space Sci. 184, 287–295.

    Article  MATH  ADS  Google Scholar 

  • Myasnikov, A.V. and Zhekov, S.A.: 1993, Modelling of X-ray emission fromWR+O binary systems, Mon.Not.R.Astron.Soc. 260, 221–240.

    ADS  Google Scholar 

  • Myasnikov, A.V. and Zhekov, S.A.: 1998, Dissipative models of colliding stellar winds – I. Effects of thermal conduction in wide binary systems, Mon.Not.R.Astron.Soc. 300, 686–694.

    ADS  Google Scholar 

  • Nerney, S., Suess, S.T. and Schmall, E.J.: 1991, Flow downstream of the heliospheric terminal shock – magnetic-field kinematics, Astron.Astrophys. 250, 556–564.

    ADS  Google Scholar 

  • Ruderman, M.S. and Fahr, H.J.: 1993, The effect of magnetic field on the macroscopic instability of the heliopause. I. Parallel interstellar magnetic fields, Astron.Astrophys. 275, 635–644.

    ADS  Google Scholar 

  • Ruderman, M.S. and Fahr, H.J.: 1995, The effect of magnetic field on the macroscopic instability of the heliopause. II. Inclusion of solar wind magnetic fields, Astron.Astrophys. 299, 258–266.

    ADS  Google Scholar 

  • Syrovastskii, S.I.: 1954, Neustoichivost' tangentsial'nyh razryvov v szhimaemoi zhidkosti, J.Exp.Theor.Phys. 27, 121–123 (in Russian).

    Google Scholar 

  • Syrovastskii, S.I.: 1957, Magnitnaya gidrodynamika, Usp.Fiz.Nauk 62, 247–303 (in Russian).

    Google Scholar 

  • Wang, C. and Belcher, J.W.: 1998, Numerical investigation of hydrodynamic instabilities of the heliopause, J.Geophys.Res. 103 (A1), 247–256.

    Article  ADS  Google Scholar 

  • Zhekov, S.A., Palla, F. and Myasnikov, A.V.: 1994, X-ray emission from colliding winds in pre-mainsequence binary-systems, Mon.Not.R.Astron.Soc. 271, 667–675.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruderman, M.S. Absolute and Convective Instability of Tangential Discontinuities in Viscous Fluids: Application to Heliopause. Astrophysics and Space Science 274, 327–341 (2000). https://doi.org/10.1023/A:1026593200725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026593200725

Keywords

Navigation