Skip to main content
Log in

Transverse relaxation optimized 3D and 4D 15N/15N separated NOESY experiments of 15N labeled proteins

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

NMR studies of protein structures require knowledge of spectral assignments through correlation spectroscopy and the measurement of dipolar interactions by NOESY-type experiments. In order to obtain NOEs for protons with degenerate chemical shifts, which is particularly common for large proteins with significant helical content, 3D and 4D 15N/15N separated NOESY experiments (HSQC-NOESY-HSQC) are essential for NMR studies of these proteins. TROSY sections could replace the latter or both HSQC parts of the 3D and 4D 15N/15N separated HSQC-NOESY-HSQC pulse sequences to enhance signal sensitivity and improve resolution. For a 1.0 mM, 100% 15N and 70% 2H-labeled Trichosanthin sample (∼27 kDa) at 5 °C it is found that sensitivity enhancements could only be obtained when TROSY sections replace the latter HSQC parts of 3D and 4D 15N/15N separated HSQC-NOESY-HSQC pulse sequences. The sensitivities of 3D and 4D HSQC-NOESY-TROSY experiments are enhanced by 62% and 8% at 5 °C, respectively, compared to their corresponding 3D and 4D HSQC-NOESY-HSQC experiments. Furthermore, the corresponding linewidths are, on average, decreased by 20% and 18% Hz in the HN and N2 dimensions, respectively. This enhancement of sensitivity depends on the molecular mass of the sample used and the lengths of the evolution times in the indirectly and directly detected dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Delaglio, F., Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Frenkiel, T., Bauer, C., Carr, M.C., Birdsall, B. and Feeney, J. (1990) J. Magn. Reson., 90, 420–425.

    Google Scholar 

  • Ikura, M., Bax, A., Clore, G.M. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 9020–9022.

    Google Scholar 

  • Kay, L.E., Clore, G.M., Bax, A. and Gronenborn, A.M. (1990) Science, 249, 411–414.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Meissner, A., Duus, O.J. and Sørensen, O.W. (1997) J. Biomol. NMR, 10, 89–94.

    Google Scholar 

  • Muhandiram, D.R., Xu, G.Y. and Kay, L.E. (1993) J. Biomol. NMR, 3, 463–470.

    Google Scholar 

  • Palmer, A.G., Cavanagh, J., Wright, P.E. and Rance, M. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1998) J. Am. Chem. Soc., 120, 6394–6400.

    Google Scholar 

  • Pervushin, K., Wider, G., Riek, R. and Wüthrich, K. (1999) Proc. Natl. Acad. Sci. USA, 96, 9607–9612.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 13585–13590.

    Google Scholar 

  • Salzmann, M., Wider, G., Pervushin, K., Senn, H. and Wüthrich, K. (1999a) J. Am. Chem. Soc., 121, 844–848.

    Google Scholar 

  • Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1999b) J. Biomol. NMR, 14, 85–88.

    Google Scholar 

  • Sørensen, M.D., Meissner, A. and Sørensen, O.W. (1997) J. Biomol. NMR, 10, 181–186.

    Google Scholar 

  • Torchia, D.A., Sparks, S.W. and Bax, A. (1988) J. Am. Chem. Soc., 110, 2320–2321.

    Google Scholar 

  • Venters, R.A., Metzler, W.J., Spicer, L.D., Mueller, L. and Farmer II, B.T. (1995) J. Am. Chem. Soc., 117, 9592–9595.

    Google Scholar 

  • Vuister, G.W., Clore, G.M., Gronenborn, A.M., Powers, R., Garrett, D.S., Tschudin, R. and Bax, A. (1993) J. Magn. Reson., B101, 210–213.

    Google Scholar 

  • Weigelt, J. (1998) J. Am. Chem. Soc., 120, 10778–10779.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1999) J. Biomol. NMR, 13, 3–10.

    Google Scholar 

  • Zhu, G., Kong, X.M., Yan. X.Z. and Sze, K.H. (1998) Angew. Chem. Int. Ed. Engl., 37, 2859–2861.

    Google Scholar 

  • Zhu, G., Kong, X.M. and Sze, K.H. (1999a) J. Biomol. NMR, 13, 77–81.

    Google Scholar 

  • Zhu, G., Xia, Y., Sze, K.H. and Yan, X. (1999b) J. Biomol. NMR, 14, 377–381.

    Google Scholar 

  • Zuiderweg, E.R.P., Petros, A.M., Fesik, S.W. and Olejniczak, E.T. (1991) J. Am. Chem. Soc., 113, 370–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Sze, K. & Zhu, G. Transverse relaxation optimized 3D and 4D 15N/15N separated NOESY experiments of 15N labeled proteins. J Biomol NMR 18, 261–268 (2000). https://doi.org/10.1023/A:1026590201757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026590201757

Navigation