Skip to main content

Advertisement

Log in

Peroxovanadium compounds as inhibitors of angiogenesis

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis is a complex process that involves the activation of endothelial cells through the triggering of several intracellular signaling pathways including those involving tyrosine phosphorylation. In the present study, we analyzed the angiogenic properties of two phosphotyrosyl phosphatase (PTP) inhibitors that are composed of a peroxovanadium core containing different ancillary ligands. In cell monolayer and 3D culture systems examined in this study, the administration of potassium bisperoxo(1,10-phenanthroline)oxovanadate(V) [bpV(phen)] or potassium bisperoxo(pyridine-2-carboxylato)oxovanadate(V) [bpV(pic)], but not oxovanadiums, interfered markedly with endothelial cell growth, organization, and terminal differentiation. This effect was dependent upon both the compound's dose and the nature of the ancillary ligand. Rat aortic ring assay showed a significant inhibition by low dose of bpV(phen) on cell migration. In addition, a chick embryo angiogenesis assay demonstrated that bpV(phen) is a potent inhibitor of angiogenesis. Among PTP inhibitors, bpV(phen) had powerful angiostatic properties at a low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671–4.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J, D'Amore PA. Blood vessel formation: What is its molecular basis? Cell 1996; 87: 1153–5.

    Article  PubMed  CAS  Google Scholar 

  3. Davis S, Aldrich TH, Jones PF et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–9.

    Article  PubMed  CAS  Google Scholar 

  4. Suri C, Jones PF, Patan S et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171–80.

    Article  PubMed  CAS  Google Scholar 

  5. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–12.

    Article  PubMed  CAS  Google Scholar 

  6. Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995; 129: 895–8.

    Article  PubMed  CAS  Google Scholar 

  7. Jaye M, Schlessinger J, Dionne CA. Fibroblast growth factor receptor tyrosine kinases: Molecular analysis and signal transduction. Biochim Biophys Acta 1992; 1135: 185–99.

    Article  PubMed  CAS  Google Scholar 

  8. Partanen J, Armstrong E, Makela TP et al. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol 1992; 12: 1698–707.

    PubMed  CAS  Google Scholar 

  9. Dumont DJ, Yamaguchi TP, Conlon RA et al. Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 1992; 7: 1471–80.

    PubMed  CAS  Google Scholar 

  10. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–64.

    Article  PubMed  CAS  Google Scholar 

  11. Dumont DJ, Gradwohl G, Fong GH et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994; 8: 1897–909.

    PubMed  CAS  Google Scholar 

  12. Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70.

    Article  PubMed  CAS  Google Scholar 

  13. Puri MC, Rossant J, Alitalo K et al. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. Embo J 1995; 14: 5884–91.

    PubMed  CAS  Google Scholar 

  14. Sato TN, Tozawa Y, Deutsch U et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70–4.

    Article  PubMed  CAS  Google Scholar 

  15. Shalaby F, Rossant J, Yamaguchi TP et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62–6.

    Article  PubMed  CAS  Google Scholar 

  16. Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–9.

    Article  PubMed  CAS  Google Scholar 

  17. Relf M, LeJeune S, Scott PA et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997; 57: 963–9.

    PubMed  CAS  Google Scholar 

  18. Hubbard SR, Mohammadi M, Schlessinger J. Autoregulatory mechanisms in protein-tyrosine kinases. J Biol Chem 1998; 273: 11987–90.

    Article  PubMed  CAS  Google Scholar 

  19. Mohammadi M, Froum S, Hamby JM et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. Embo J 1998; 17: 5896–904.

    Article  PubMed  CAS  Google Scholar 

  20. Jove R, Hanafusa H. Cell transformation by the viral src oncogene. Annu Rev Cell Biol 1987; 3: 31–56.

    Article  PubMed  CAS  Google Scholar 

  21. Hunter T. Protein modification: Phosphorylation on tyrosine residues. Curr Opin Cell Biol 1989; 1: 1168–81.

    PubMed  CAS  Google Scholar 

  22. Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science 1991; 253: 401–6.

    PubMed  CAS  Google Scholar 

  23. Tonks NK, Diltz CD, Fischer EH. Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 1988; 263: 6731–7.

    PubMed  CAS  Google Scholar 

  24. Guan KL, Dixon JE. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem 1991; 266: 17026–30.

    PubMed  CAS  Google Scholar 

  25. Denu JM, Dixon JE. A catalytic mechanism for the dual-specific phosphatases. Proc Natl Acad Sci USA 1995; 92: 5910–4.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang ZY, Wang Y, Dixon JE. Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc Natl Acad Sci USA 1994; 91: 1624–7.

    Article  PubMed  CAS  Google Scholar 

  27. Tonks NK, Diltz CD, Fischer EH. Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 1988; 263: 6722–30.

    PubMed  CAS  Google Scholar 

  28. Barford D, Flint AJ, Tonks NK. Crystal structure of human protein tyrosine phosphatase 1B. Science 1994; 263: 1397–404.

    PubMed  CAS  Google Scholar 

  29. Shaver A, Ng JB, Hall DA, Posner BI. The chemistry of peroxovanadium compounds relevant to insulin mimesis. Mol Cell Biochem 1995; 153: 5–15.

    Article  PubMed  CAS  Google Scholar 

  30. Posner BI, Faure R, Burgess JW et al. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem 1994; 269: 4596–604.

    PubMed  CAS  Google Scholar 

  31. Faure R, Vincent M, Dufour M et al. Arrest at the G2/M transition of the cell cycle by protein-tyrosine phosphatase inhibition: Studies on a neuronal and a glial cell line. J Cell Biochem 1995; 59: 389–401.

    Article  PubMed  CAS  Google Scholar 

  32. Olivier M, Romero-Gallo BJ, Matte C et al. Modulation of interferon-gamma-induced macrophage activation by phosphotyrosine phosphatases inhibition. Effect on murine Leishmaniasis progression. J Biol Chem 1998; 273: 13944–9.

    Article  PubMed  CAS  Google Scholar 

  33. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973; 52: 2745–56.

    Article  PubMed  CAS  Google Scholar 

  34. Janvier R, Sourla A, Koutsilieris M, Doillon CJ. Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res 1997; 17: 1551–7.

    PubMed  CAS  Google Scholar 

  35. Nicosia RF, Ottineti A. Growth of microvessels in serum-free-matrix culture of aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 1990, 63: 115–22.

    PubMed  CAS  Google Scholar 

  36. Draetta G, Eckstein J. Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta 1997; 1332: M53-M63.

    PubMed  CAS  Google Scholar 

  37. Fotsis T, Pepper M, Adlercreutz H et al. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr 1995; 125: 790S-7S.

    PubMed  CAS  Google Scholar 

  38. Montesano R, Pepper MS, Belin D et al. Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 1988; 134: 460–6.

    Article  PubMed  CAS  Google Scholar 

  39. Jackson JK, Min W, Cruz TF et al. A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice. Br J Cancer 1997; 75: 1014–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doillon, C.J., Faure, R.L., Posner, B.I. et al. Peroxovanadium compounds as inhibitors of angiogenesis. Angiogenesis 3, 361–369 (1999). https://doi.org/10.1023/A:1026577418765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026577418765

Navigation