Skip to main content
Log in

Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: form, function and detection

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

It is often assumed that all species of arbuscular mycorrhizal fungi (AMF) have the same function because of the ubiquity of the arbuscular mycorrhizal symbiosis and the fact that all AMF occupy the same plant/soil niche. Despite apparent differences in the timing of evolutionary divergence and the morphological characteristics of AMF from the different genera, the majority of studies on these fungi use only species of Glomus. There is increasing evidence, however, that the mechanisms involved in the establishment of a mycorrhiza may differ for species and genera of AMF and influence their subsequent function. The aim of this paper is to highlight the diversity in the form and function of AMF from different genera, knowledge of which is vital in understanding their ecological roles. Potential use of biochemical and molecular approaches to detect AMF in planta and ex planta is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott L K 1982 Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover. Aust. J. Bot. 30, 485–499.

    Article  Google Scholar 

  • Abbott L K and Gazey C 1994 An ecological view of the formation of VA mycorrhizas. Plant Soil 159, 69–78.

    Google Scholar 

  • Abbott L K and Robson A D 1985 Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 99, 245–255.

    Article  Google Scholar 

  • Abbott L K, Robson A D, Jasper D A and Gazey C 1992What is the role of VA Mycorrhizal Hyphae in soil? In Mycorrhizas in Ecosystems. Eds. DJ Read, DH Lewis, AH Fitter and IJ Alexander. pp 37–41. CAB International, University Press Cambridge.

    Google Scholar 

  • Addy H D, Miller M H and Peterson R L 1997 Infectivity of the propagules associated with extraradical mycelia of two AMfungi following winter freezing. New Phytol. 135, 745–753.

    Article  Google Scholar 

  • Alexander T, Toth R, Meier R and Weber H C 1989 Dynamics of arbuscule development and degeneration in onion, bean and tomato with particular reference to vesicular-arbuscular mycorrhizae in grasses. Can. J. Bot. 67, 2505–2513.

    Google Scholar 

  • Allen MF 1996 The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycol. Res. 100, 769–782.

    Google Scholar 

  • Ames R N, Ingham E R and Reid C P P 1982 Ultraviolet-induced autofluorescence of arbuscular mycorrhizal root infections: an alternative to cleaning and staining methods for assessing infections. Can. J. Microbiol. 28, 351–355.

    Article  CAS  Google Scholar 

  • Amijee F, Tinker P B and Stribley D P 1989 The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonisation. New Phytol. 111, 435–446.

    Article  Google Scholar 

  • Amijee F, Stribley D P and Lane P W 1993 The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply. New Phytol. 125, 581–586.

    Article  Google Scholar 

  • Bago B, Azcon-Aguilar C and Piche Y 1998 Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoaxenic conditions. Mycologia 90, 52–62.

    Google Scholar 

  • BEG 1999 - WWW page URL: wwwbio.ukc.ac.uk/beg

  • Bentivenga S P and Morton J B 1995 A monograph of the genus Gigaspora, incorporating developmental patterns of morphological characters. Mycologia 87, 719–731.

    Google Scholar 

  • Boddington C L and Dodd J C 1998 A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8, 149–157.

    Article  CAS  Google Scholar 

  • Boddington C L and Dodd J C 1999 Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora may be related to their life-cycle strategies. New Phytol.

  • Boddington C L, Bassett E E, Jakobsen I and Dodd J C 1999 Comparison of techniques for the extraction and quantification of extra-radical mycelium of arbuscular mycorrhizal fungi from two soils containing fine particulate matter. Soil Biol. Biochem. 31, 479–482.

    Article  CAS  Google Scholar 

  • Braunberger P G, Abbott L K and Robson A D 1994 The effect of rain in the dry season on the formation of vesicular-arbuscular mycorrhizas in the growing season of annual clover-based pastures. New Phytol. 127, 107–114.

    Article  Google Scholar 

  • Brundrett M C, Piche Y and Peterson R L 1984 A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can. J. Bot. 62, 2128–2134.

    Google Scholar 

  • Brundrett M and Kendrick B 1988 The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Can. J. Bot. 66, 1153–1173.

    Google Scholar 

  • Brundrett M and Kendrick B 1990 The roots and mycorrhizae of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 114, 469–479.

    Article  Google Scholar 

  • Brundrett M and Abbott L K 1994 Mycorrhizal fungus propagules in the jarrah forest I. Seasonal study of inoculum levels. New Phytol. 127, 539–546.

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T and Malajczuk N 1996 Working with Mycorrhizas in Forestry and Agriculture, ACIAR Monograph 32. 373 p.

  • Claassen V P, Zasoski R J and Tyler B M 1996 A method for direct soil extraction and PCR amplification of endomycorrhizal fungal DNA. Mycorrhiza 6, 447–450.

    Article  CAS  Google Scholar 

  • Clapp J P, Young J P W, Merryweather J and Fitter A H 1995 Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol. 130, 259–265.

    Article  Google Scholar 

  • Clapp J P, Fitter A H and Young J P W 1999 Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Molecular Ecology 8, 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Daniels-Hetrick B A, Bloom J and Feyerherm S M 1985 Root colonization pattern of Glomus epigaeum in nine host species. Mycologia 77, 825–828.

    Google Scholar 

  • Declerck S, Strullu D G and Plenchette C 1996 In vitro massproduction of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol. Res. 100, 1237–1242.

    Google Scholar 

  • Di Bonito R, Elliot M L and Des Jardin E A 1995 Detection of an arbuscular mycorrhizal fungus in roots of different plant species with PCR. Appl. Environ Microbiol. 61, 2809–2810.

    PubMed  CAS  Google Scholar 

  • Dodd J C 1994 Approaches to the study of the extraradical mycelium of arbuscular mycorrhizal fungi. In Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Eds. S Gianinazzi and H Schüepp. pp 147-166. Birkhäuser Verlag Basel, Switzerland.

    Google Scholar 

  • Dodd J C, Arias I, Koomen I and Hayman D S 1990 The management of vesicular-arbuscular mycorrhizal populations in acidinfertile soils of a savanna ecosystem. I. The effect of precropping and VAMF inoculation on plant growth and nutrition in the field. Plant Soil 122, 229–240.

    CAS  Google Scholar 

  • Edwards S G, Fitter A H and Young J P W 1997 Identification of an arbuscular mycorrhizal fungus, Glomus mosseae, within plant roots by competitive polymerase chain reaction. Mycol. Res. 101, 1440–1444.

    Article  Google Scholar 

  • Ezawa, T, Kuwahara S, Sakamoto K, Yoshida T and Saito M 1999 Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, Glomus etunicatum. Mycologia 91, 636–641.

    CAS  Google Scholar 

  • Friese C F and Allen M F 1991 The spread of VA mycorrhizal fungi hyphae in the soil: inoculum types and external hyphal structure. Mycologia 83, 409–418.

    Google Scholar 

  • Gange A C, Bower E, Stagg P G, Aplin D M, Gillam A E and Bracken M 1999 A comparison of visualization techniques for recording arbuscular mycorrhizal colonization. New Phytol. 142, 123–132.

    Article  Google Scholar 

  • Gazey C, Abbott L K and Robson A D 1992 The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species of Acaulospora. Mycol. Res. 96, 643–550.

    Google Scholar 

  • Gazey C, Abbott L K and Robson A D 1993 VA mycorrhizal spores from three species of Acaulospora: germination, longevity and hyphal growth. Mycol. Res. 97, 785–790.

    Google Scholar 

  • Graham J H, Hodge N C and Morton, J B 1995 Fatty acid methyl ester profiles for characterisation of Glomalean fungi and their endomycorrhizae. Appl. Environ. Microbiol. 61, 58–64.

    PubMed  CAS  Google Scholar 

  • Graham J H, Duncan L W and Eissenstat D M 1997 Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol. 135, 335–343.

    Article  CAS  Google Scholar 

  • Harrison M J 1998 Development of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 1, 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Helgason T, Daniell T J, Husband R, Fitter A H and Young J P W 1998 Ploughing up the wood-wide web? Nature 394, 431.

    Article  PubMed  CAS  Google Scholar 

  • Hepper C M 1985 Influence of age of roots on the pattern of vesicular arbuscular mycorrhizal infection in leek and clover New Phytol. 101, 685–693.

    Google Scholar 

  • Hepper C M, Sen R and Maskall C S 1986. Identification of vesicular-arbuscular mycorrhizal fungi in roots of leek (Allium porrum L.) and maize (Zea mays L.) on the basis of enzyme mobility during polyacrylamide gel electrophoresis. New Phytol. 102, 529–539.

    Article  Google Scholar 

  • Hepper C M, Azcon-Aguilar C, Rosendahl S and Sen R 1988 Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inoculation for leek (Allium porrum L.). New Phytol. 110, 207–215.

    Article  Google Scholar 

  • INVAM 1999 WWWpage URL: http V ==invam:caf:wvu:edu=

  • Jakobsen I, Abbott L K and Robson A D 1992a External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120, 371–380.

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbott L K and Robson A D 1992b External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol. 120, 509–516.

    Article  CAS  Google Scholar 

  • Jasper D A, Robson A D and Abbott L K 1988 Revegetation in an iron-ore mine - nutrient requirements for plant growth and the potential role of vesicular arbuscular (VA) mycorrhizal fungi. Aust. J. Soil Res. 26, 497–507.

    Article  CAS  Google Scholar 

  • Johnson N C, Graham J H and Smith F A 1997 Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135, 575–585.

    Article  Google Scholar 

  • Kjoller R and Rosendahl S. 1996 Arbuscular mycorrhizal fungi in roots from a Danish pea field determined by polyacrylamide gel electrophoresis of specific fungal enzymes. Abstract of oral presentation at 1st International Conference onMycorrhizae, San Francisco, CA, USA. July 31- August 3 1996.

  • Kjoller R and Rosendahl S 2000 - Plant Soil 226, 189–196.

    Article  CAS  Google Scholar 

  • Klironimos J N and Kendrick B 1993 Research on mycorrhizas: trends in the past 40 years as expressed in the 'MYCOLIT' database. New Phytol. 125, 595–600.

    Article  Google Scholar 

  • Kormanik P P and McGraw A-C 1982 Quantification of vesiculararbuscular mycorrhizae in plant roots. In Methods and Principles of Mycorrhizal Research. Ed. NC Schenck. pp 37–45. St. Paul, MN, USA. American Phytopathological Society.

    Google Scholar 

  • Lanfranco L, Delpero M and Bonfante P 1999 Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Molecular Ecology 8, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Larsen J, Olsson P A and Jakobsen I 1998 The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycol. Res. 102, 1491–1496.

    Article  CAS  Google Scholar 

  • Lee P-J and Koske R E Gigaspora gigantea: seasonal abundance and ageing of spores in a sand dune. Mycol. Res. 98, 453- 457.

  • Lloyd-Macgilp S A, Chambers S M, Dodd J C, Fitter A H, Walker C and Young J P W 1996 Diversity of the internal transcribed spacers within and among isolates of Glomus mosseae and related arbuscular mycorrhizal fungi. New Phytol. 133, 103–112.

    Article  CAS  Google Scholar 

  • Merryweather J and Fitter A 1991 A modified method for elucidating the structure of the fungal partner in a vesicular-arbuscular mycorrhiza. Mycol. Res. 95, 1435–1437.

    Article  Google Scholar 

  • Merryweather J and Fitter A 1998 The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta. I. Diversity of fungal taxa. New Phytol. 138, 117–129.

    Article  Google Scholar 

  • Miller R M and Jastrow J D 1992 The role of mycorrhizal fungi in soil conservation. In Proceedings of a Symposium on Mycorrhizae in Sustainable Agriculture. Eds. GJ Bethlenfalvay and RG Linderman. pp 29-44. ASA Special Publication No. 54. Madison, Wisconsin, USA.

  • Morton J B 1985 Underestimation of most probable numbers of vesicular arbuscular endophytes because of non-staining mycorrhizae. Soil Biol. Biochem. 17, 383–384.

    Article  Google Scholar 

  • Morton J B and Benny G L 1990 Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporinaceae, with an emendation of Glomaceae. Mycotaxon 37, 471–491.

    Google Scholar 

  • Morton J B and Bentivenga S P 1994 Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups. Plant Soil 159, 47–59.

    Google Scholar 

  • Morton J B 1995 Taxonomic and phylogenetic divergence among five Scutellospora species based on comparative developmental sequences. Mycologia 87, 127–137.

    Google Scholar 

  • Nicolson T H 1959 Mycorrhiza in the Graminae. I. Vesicular- arbuscular endophytes, with special reference to the external phase. Trans. Brit. Mycol. Soc. 42, 421–438.

    Google Scholar 

  • Olsson P A, Baath E, Jakobsen I and Soderstrom B 1995 The use of phospholipid and neutral fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629.

    CAS  Google Scholar 

  • Pearson J N and Jakobsen I 1993 Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol. 124, 481–488.

    Article  CAS  Google Scholar 

  • Pearson J N and Schweiger P 1993 Scutellospora calospora (Nicol. And Gerd.) Walker and Sanders associated with subterranean clover: dynamics of colonisation, sporulation and soluble carbohydrates. New Phytol. 124, 215–219.

    Article  Google Scholar 

  • Pearson J N, Abbott L K and Robson A D 1993 Mediation of competition between two colonising VA mycorrhizal fungi by the host plant. New Phytol. 123, 93–98.

    Article  Google Scholar 

  • Phillips J M and Hayman, D S 1970. Improved procedure for clearing roots and staining parasitic and vesicular arbuscular fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55, 158–161.

    Article  Google Scholar 

  • Read D 1998 Plants on the Web. Nature 396, 22–23.

    Article  CAS  Google Scholar 

  • Riling M C, Wright S F, Allen M F and Field C B 1999 Rise in carbon dioxide changes soil structure. Nature 400, 628.

    Article  CAS  Google Scholar 

  • Rivillas C A 1995 The effects of arbuscular mycorrhizal fungi on two different coffee varieties from Colombia and their biochemical detection in roots. M.Sc. Thesis, University of Kent at Canterbury, UK. 87 p.

    Google Scholar 

  • Rivillas C and Dodd J C 1996 The effects of arbuscular mycorrhizal fungi on two different coffee varieties from Colombia and their biochemical detection in roots. InMycorrhizas in Integrated Systems from Genes to Plant Development. Proceedings of 4th European Symposium on Mycorrhizas, Granada, Spain 11- 14 July 1994. pp 47–50. EC Brussels.

  • Rodriguez A and Dodd J C 1998 The use of isozyme markers to screen the intraspecific diversity of isolates of Glomus etunicatum in comparison with other species of Glomus. Abstract poster presented at ICOM2 in Uppsala, Sweden 1998.

  • Rouhier H and Read D J 1998 The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytol. 139, 367–373.

    Article  Google Scholar 

  • Rozycka M 1994 Use of biochemical and immunological methods to distinguish arbuscular mycorrhizal fungi. Ph.D. Thesis, University of Kent at Canterbury, UK. 160 p.

    Google Scholar 

  • Sanders F E, Mosse B and Tinker PB (eds) 1975 Endomycorrhizas. Academic Press, London, UK. 626 p.

    Google Scholar 

  • Sanders I R, Alt M, Groppe K, Boller T and Wiemken A 1995 Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 130, 419–427.

    Article  CAS  Google Scholar 

  • Sanders I R, Clapp J P and Wiemken A 1996 The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems - a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol. 133, 123–134.

    Article  Google Scholar 

  • Sanders I R, Streitwolf-Engel R, Van der Heijden M G A, Boller T and Wiemken A 1998 Increased allocation to external hyphae of arbuscular mycorrhiza fungi under CO2 enrichment. Oecologia 117, 496–503.

    Article  Google Scholar 

  • Simon L, Lalonde M and Bruns T 1992 Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295.

    PubMed  CAS  Google Scholar 

  • Simon L, Bousquet J, Lè vesque R C and Lalonde M 1993a Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363, 67–69.

    Article  Google Scholar 

  • Simon L, Vesque R and Lalonde M 1993b Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl. Environ. Microbiol. 59, 4211–4215.

    PubMed  CAS  Google Scholar 

  • Smith F A and Smith S E 1995 Nutrient transfer in vesiculararbuscular mycorrhizas: a new model based on the distribution of ATPases on fungal and plant membranes. Biotropia 8, 1–10.

    Google Scholar 

  • Smith F A and Smith S E 1996 Mutualism and Parasitism: biodiversity in function and structure in the 'arbuscular' (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22, 1–43.

    Article  Google Scholar 

  • Smith S E and Read D J (eds) 1997 Mycorrhizal Symbiosis (2nd Edn). Academic Press: London, UK. 605 p.

    Google Scholar 

  • Staddon P L 1998 Insights into mycorrhizal colonisation at elevated CO2: a simple carbon partitioning model. Plant Soil 205, 171–180.

    Article  CAS  Google Scholar 

  • Stutz J C and Morton J B 1996 Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid ecosystems. Can. J. Bot. 74, 1883–1889.

    Google Scholar 

  • Thomson B D, Robson A D and Abbott K 1990 Mycorrhizas formed by Gigaspora calospora and Glomus fasciculatum on subterranean clover in relation to carbohydrate concentration in roots. New Phytol. 114, 217–255.

    Article  CAS  Google Scholar 

  • Tisdall JM1991 Fungal hyphae and structural stability of soil. Aust. J. Soil Res. 29, 729–743.

    Article  Google Scholar 

  • Tisdall J M and Oades J M 1979 Organic matter and water-stable aggregates in soils. J Soil Sci. 33, 141–163.

    Google Scholar 

  • Tisserant B, Brenac V, Requena N, Jeffries P and Dodd J C 1998 The detection of Glomus spp. (arbuscular mycorrhizal fungi) forming mycorrhizas in three plants, at different stages of seedling development, using mycorrhiza-specific isozymes. New Phytol. 138, 225–239.

    Article  CAS  Google Scholar 

  • Van der Heijden M G A, Boller T, Wiemken A and Sanders I R 1998a Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79, 2082–2091.

    Article  Google Scholar 

  • Van der Heijden M G A, Klironimos J N, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A and Sanders I R 1998b Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72.

    Article  CAS  Google Scholar 

  • Van Tuinen D, Jacquot E, Zhao B, Gollotte A and Gianinazzi-Pearson V 1998 Characterisation of root colonisation profiles by a microcosm community of arbuscular mycorrhizal fungi using 25 S rDNA-targeted nested PCR. Molecular Ecology 7, 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Coughlan A P, Wyss U and Piche Y 1998 Ink and Vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Env. Microbiol. 64, 5004–5007.

    CAS  Google Scholar 

  • Vosatka M and Dodd, J C 1998 The role of different arbuscular mycorrhizal fungi growth of Calamagrostis villosa and Deschampsia flexuosa in experiments with simulated acid rain. Plant Soil, 200, 251–263.

    Article  CAS  Google Scholar 

  • Weickel B 1998 Studies on the isolation, identification and biological characterisation of arbuscular mycorrhizal fungi. Dr. Agr. Thesis Rheinischen Friedrich-Wilhelms-Universitat, Bonn, Germany.

    Google Scholar 

  • Widden P 1996 The morphology of vesicular-arbuscular mycorrhizae in Clintona borealis and Medeola virginiana. Can. J. Bot. 74, 679–685.

    Article  Google Scholar 

  • Wilson G W T and Hartnett D C 1997 Effects of mycorrhizae on plant growth and dynamics in experimental tallgrass prairie micrcosms. Am. J. Bot. 84, 478–482.

    Article  Google Scholar 

  • Wright S F and Upadhyaya A 1996 Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586.

    Article  CAS  Google Scholar 

  • Wright S F and Upadhyaya A 1998 A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198, 97–107.

    Article  CAS  Google Scholar 

  • Wright S F, Upadhyaya A and Buyer J S 1998 Comparison of Nlinked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol. Biochem. 13, 1853–1857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, J.C., Boddington, C.L., Rodriguez, A. et al. Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil 226, 131–151 (2000). https://doi.org/10.1023/A:1026574828169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026574828169

Navigation