Skip to main content

Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa

Abstract

Male-associated DNA sequences were analysed in hemp (Cannabis sativa L.), a dioecious plant with heteromorphic sex chromosomes. A male-associated DNA sequence in C. sativa (MADC1) and its flanking sequence encoded a reverse transcriptase that was strongly homologous to those of LINE-like retrotransposons from various plants and other organisms, as well as another open reading frame (ORF). Fluorescence in situ hybridization (FISH) with MADC1 as probe, which yielded strong signals specific for male genomic DNA in gel blot analysis, generated a clear doublet signal at the end of the long arm of the Y chromosome. FISH using pachytene chromosomes of pollen mother cells at meiotic prophase I revealed that pairing of X and Y chromosomes occurred at the short arm of the Y chromosome where MADC1 was not present. Furthermore, FISH using extended DNA fibers, with MADC1 and its flanking DNA as probes, revealed that 100 to 200 copies of the retrotransposon were located in tandem on the Y chromosome. These results support the hypothesis that accumulation of a specific LINE-like retrotransposon at the terminal region of the long arm of the Y chromosome might be one cause of heteromorphism of sex chromosomes.

This is a preview of subscription content, access via your institution.

References

  1. Boeke, J.D. 1989. Transposable elements in Saccharomyces cerevisiae. In: D.E. Berg and M.M. Howe (Eds.) Mobile DNA. American Society for Microbiology, Washington, DC, pp. 335–374.

    Google Scholar 

  2. Chattopadhyay, D. and Sharma, A.K. 1991. Sex determination in dioecious species of plants. Fedn. Proc. 102: 29–55.

    Google Scholar 

  3. Danilevskaya, O.N., Tan, C., Wong, J., Alibhai, M. and Pardue, M.-L. 1998. Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in Drosophila yakuba telomere elements. Proc. Natl. Acad. Sci. USA 95: 3770–3775.

    PubMed  Google Scholar 

  4. Farbos, I., Veuskens, J., Vyskot, B., Oliveira, M., Hinnisdaels, S., Aghmir, A., Mouras, A. and Negrutiu, I. 1999. Sexual dimorphism in White Campion: deletion on the Y chromosome results in a floral asexual phenotype. Genetics 151: 118–1196.

    Google Scholar 

  5. Flavell A.J., Pearce, S.R. and Kumar, A. 1994. Plant transposable elements and the genome. Curr. Opin. Genet. Dev. 4: 838–844.

    PubMed  Google Scholar 

  6. Franz, P.F., Alonso-B.C., Liharska, T.B., Peeters, A.J.M., Zabel, P. and de Jong, J.H. 1996. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J. 9: 421–430.

    PubMed  Google Scholar 

  7. Grant, S., Houben, A., Vyskot, B., Siroky, J., Pan, W.-H., Macas, J. and Saedler, H. 1994. Genetics of sex determination in flowering plants. Dev. Genet. 15: 214–230.

    Google Scholar 

  8. Kimura, H. 1983. The neural Theory of Molecular Evolution, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  9. Leeton, P.R., and Smyth, D.R. 1993. An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol. Gen. Genet. 237: 97–104.

    PubMed  Google Scholar 

  10. Liu, Y.-G., Mitsunaga, N., Oosumi, T. and Whittier, R.F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by terminal asymmetric interlaced PCR. Plant J. 8: 457–463.

    PubMed  Google Scholar 

  11. Ohmido, N. and Fukui, K. 1996. A new manual for fluorescence in situ hybridization (FISH) in plant chromosomes. Rice Genet. Newsl. 13: 89–93.

    Google Scholar 

  12. Ohmido, N. and Fukui, K. 1997. Visual verification of close disposition between a rice genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol. 35: 963–968.

    PubMed  Google Scholar 

  13. Okazaki, S., Ishikawa, H. and Fujiwara, H. 1995. Structural analisis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Mol. Cell. Biol. 15: 4545–4552.

    PubMed  Google Scholar 

  14. Parra, I. and Windle, R.F. 1993. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genet. 5: 17–21.

    PubMed  Google Scholar 

  15. Reijo, R., Lee, T., Salo, P., Alagappan, R., Brown, L., Rosenberg, M., Affe, T., Straus, D., Hovatta, O., Delachapelle, A., Silber, S. and Page, D. 1995. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNAbinding protein gene. Nature Genet. 10: 383–393.

    PubMed  Google Scholar 

  16. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  17. Sakamoto, K., Shimomura, K., Komeda, Y., Kamada, H. and Satoh, A.S. 1995. A male-associated DNA sequence in a dioecious plant, Cannabis sativa L.. Plant Cell Physiol. 36: 1549–1554.

    PubMed  Google Scholar 

  18. Sakamoto, K., Akiyama, Y., Fukui, K., Kamada, H. and Satoh, S. 1998. Characterization, genome sizes and morphology of sex chromosome in hemp (Cannabis sativa L.). Cytologia 63: 459–464.

    Google Scholar 

  19. Sanger, F.S., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    PubMed  Google Scholar 

  20. Sheen, F.-M., and Levis, R.W. 1994. Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc. Natl. Acad. Sci. USA 91: 12510–12514.

    PubMed  Google Scholar 

  21. Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell, B.R. and Goodfellow, P.N. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNAbinding motif. Nature 346: 240–244.

    Article  PubMed  Google Scholar 

  22. Takahashi, H., Okazaki, S. and Fujikawa, H. 1997. A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucl. Acids Res. 25: 578–1584.

    Google Scholar 

  23. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitively of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    PubMed  Google Scholar 

  24. Westergaard, M. 1946. Aberrant Y chromosomes and sex expression in Melandrium album. Hereditas 32: 419–431.

    Google Scholar 

  25. Westergaard, M. 1948. The relation between chromosome constitution and sex in the offspring of triploid Melandrium. Hereditas 34: 257–279.

    Google Scholar 

  26. Westergaard, M. 1958. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9: 217–281.

    PubMed  Google Scholar 

  27. Wright, D.A., Ke, N., Samalle, D., Hauge, B.M., Goodman, H.M. and Voytas, D.F. 1996. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142: 569–578.

    PubMed  Google Scholar 

  28. Xiong, Y. and Eickbush, T.H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    PubMed  Google Scholar 

  29. Yamada, I. 1943. The sex-chromosome of Cannabis sativa L. Rep. Kihara Inst. Biol.Res. 2: 64–68.

    Google Scholar 

  30. Yampolsky, C., and Yampolsky, H., 1922. Distribution of the sex forms in the phanerogamic flora. Bibl. Genet. 3: 1–62.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sakamoto, K., Ohmido, N., Fukui, K. et al. Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44, 723–732 (2000). https://doi.org/10.1023/A:1026574405717

Download citation

  • Cannabis sativa
  • fluorescence in situ hybridization
  • male
  • retrotransposon
  • sex chromosome