Plant Ecology

, Volume 151, Issue 1, pp 19–28 | Cite as

Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants

  • Stefan Porembski
  • Wilhelm Barthlott
Article

Abstract

Although desiccation tolerance is common in non-vascular plants, this adaptive trait is very rare in vascular plants. Desiccation-tolerant vascular plants occur particularly on rock outcrops in the tropics and to a lesser extent in temperate zones. They are found from sea level up to 2800 m. The diversity of desiccation-tolerant species as measured by number of species is highest in East Africa, Madagascar and Brazil, where granitic and gneissic outcrops, or inselbergs, are their main habitat. Inselbergs frequently occur as isolated monoliths characterized by extreme environmental conditions (i.e., edaphic dryness, high degrees of insolation). On tropical inselbergs, desiccation-tolerant monocotyledons (i.e., Cyperaceae and Velloziaceae) dominate in mat-like communities which cover even steep slopes. Mat-forming desiccation-tolerant species may attain considerable age (hundreds of years) and size (several m in height, for pseudostemmed species). Both homoiochlorophyllous and poikilochlorophyllous species occur. In their natural habitats, both groups survive dry periods of several months and regain their photosynthetic activity within a few days after rainfall. Other desiccation-tolerant species colonize shallow depressions, crevices and even temporarily water-filled rock pools on inselbergs. Desiccation-tolerant vascular plants occur in 13 families and are best represented within the monocotyledons and ferns. Only a few desiccation-tolerant dicots exist, in the Gesneriaceae, Myrothamnaceae and Scrophulariaceae. In total, about 330 species of vascular desiccation-tolerant plants are known, of which nearly 90% occur on inselbergs. With regard to morphological adaptations, the mat-forming monocotyledons are particularly remarkable due to the possession of roots with a velamen radicum, which is reported here in the genus Borya for the first time.

Afrotrilepis Borya Desiccation tolerance Granitic outcrops Myrothamnus Poikilohydry Resurrection plants Velloziaceae Water stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves, R. J. V. 1994. Morphological age determination and longevity in some Vellozia populations in Brazil. Folia Geobot. Phytotax. 29: 55–59.Google Scholar
  2. Ayensu, E. S. 1974. Leaf anatomy and systematics of New World Velloziaceae. Smithonian Contr. Bot. 15: 1–125.Google Scholar
  3. Ayo-Owoseye, J. & Sanford, W. W. 1972. An ecological study of Vellozia schnitzleinia, a drought-enduring plant of northern Nigeria. J. Ecol. 60: 807–817.Google Scholar
  4. Bartels, D., Furini, A., Bockel, C., Frank, W. & Salamini F. 1996. Gene expression during dehydration stress in the resurrection plant Craterostigma plantagineum. Pp. 117–122. In: Grillo, S. & Leone, A. (eds), Physical stress in plants. Springer-Verlag, Berlin.Google Scholar
  5. Barthlott, W. & Capesius, I. 1975. Mikromorphologische und funktionelle Untersuchungen am Velamen radicum der Orchideen. Ber. Dt. Bot. Ges. 88: 379–390.Google Scholar
  6. Barthlott, W., Gröger, A. & Porembski, S. 1993. Some remarks on the vegetation of tropical inselbergs: diversity and ecological differentiation. Biogéographica 69: 105–124.Google Scholar
  7. Bewley, J. D. 1979. Physiological aspects of desiccation tolerance. Annu. Rev. Plant Physiol. 30: 195–238.Google Scholar
  8. Bewley, J. D. 1995. Physiological aspects of desiccation tolerance -a retrospect. Int. J. Plant Sci. 156: 393–403.Google Scholar
  9. Bonardi, B. 1966. Contribution à l'étude botanique des inselbergs de Cô te d'Ivoire forestiè re. Dipl. Ét. sup., Abidjan.Google Scholar
  10. Carlquist S. 1976. Wood anatomy of Myrothamnus flabellifolia (Myrothamnaceae) and the problem of multiperforate perforation plates. J. Arnold Arbor. 57: 119–126.Google Scholar
  11. Dinter, K. 1918. Botanische Reisen in Deutsch-Südwest-Afrika. Feddes Rep. Beih. 3: 1–169.Google Scholar
  12. Engler, A. & Krause, K. 1911. Ñber den anatomischen Bau der baumartigen Cyperaceae Schoenodendron bücheri Engl. aus Kamerun. Abh. Kgl. Preuß . Akad. d. Wissensch. 1911.Google Scholar
  13. Fahn, A. & Cutler, D. F. 1992. Xerophytes. In: Braun, H. J., Carlquist, S., Ozenda, P. & Roth, I. (eds), Handbuch der Pflanzenanatomie. Spezieller Teil, Vol. 13, part 3. Borntraeger, Berlin.Google Scholar
  14. Gaff, D. F. & Churchill, D. M. 1976. Borya nitida Labill. -an Australian species in the Liliaceae with desiccation-tolerant leaves. Aust. J. Bot. 24: 209–224.Google Scholar
  15. Gaff, D. F. 1977. Desiccation tolerant vascular plants of Southern Africa. Oecologia 31: 95–109.Google Scholar
  16. Gaff, D. F. 1981. The biology of resurrection plants. Pp. 114–146. In: Pate, J. S. & McComb, A. J. (eds), The biology of Australian plants. University of Western Australia Press, Perth.Google Scholar
  17. Gaff, D. F. & Bole, P. V. 1986. Resurrection grasses in India. Oecologia 71: 159–160.Google Scholar
  18. Gaff, D. F. 1987. Desiccation tolerant plants in South America. Oecologia 74: 133–136.Google Scholar
  19. Gaff, D. F. 1989. Responses of desiccation tolerant 'resurrection' plants to water stress. Pp. 264–311. In: Kreeb, K. H., Richter, H. & Hinckley, T. M. (eds), Structural and functional responses to environmental stresses: water shortages. SPB Academic Publishing, The Hague.Google Scholar
  20. Hambler, D. J. 1961. A poikilohydrous, poikilochlorophyllous angiosperm from Africa. Nature 191: 1415–1416.Google Scholar
  21. Hartung, W., Schiller, P. & Dietz, K.-J. 1998. Physiology of Poikilohydric Plants. Pp. 299–327. In: Behnke, H.-D., Esser, K., Kadereit, J. W. & Lüttge, U. (eds), Progress in Botany, Vol. 59.Google Scholar
  22. Heil, H. 1924. Chamaegigas intrepidus Dtr., eine neue Auferstehungspflanze. Beih. Bot. Zentralbl. 41: 41–50.Google Scholar
  23. Hetherington, S. E., Hallam, N. D. & Smillie, R. M. 1982. Ultra-structural and compositional changes in chloroplast thylakoids of leaves of Borya nitida during humidity-sensitive degreening. Austr. J. Plant Phys. 9: 601–609.Google Scholar
  24. Ingram, J. & Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.Google Scholar
  25. Kluge, M. & Brulfert, J. In press. Ecophysiology of vascular plants on inselbergs. In: Porembski, S. & Barthlott, W. (eds), Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer-Verlag, Berlin.Google Scholar
  26. Kubitzki, K. 1998. Velloziaceae. Pp. 459–467. In: Kubitzki, K. (ed.), The families and genera of vascular plants. Vol. 3, Springer-Verlag, Berlin.Google Scholar
  27. Meirelles, S. T., Mattos, E. A. & da Silva, A. C. 1997. Potential desiccation tolerant vascular plants from southeastern Brazil. Polish J. Environ. Studies 6: 17–21.Google Scholar
  28. Menezes, N. L. de 1971. Traqueides de transfusã o no gê nero Vellozia Vand. Ciê nc. Cult. 23: 389–409.Google Scholar
  29. Mora-Osejo, L. E. 1989. La bioforma de Bulbostylis leucostachya Kunth (Cyperaceae) y de otras monocotiledoneas arboriformes tropicales. Rev. Acad. Colomb. Cien. 17: 215–230.Google Scholar
  30. Porembski, S. 1996. Notes on the vegetation of inselbergs in Malawi. Flora 191: 1–8.Google Scholar
  31. Porembski, S. & Barthlott, W. 1995. On the occurrence of a velamen radicum in tree-like Cyperaceae and Velloziaceae. Nord. J. Bot. 15: 625–629.Google Scholar
  32. Porembski, S. & Barthlott, W. 1988. Velamen radicum micromorphology and classification of Orchidaceae. Nord. J. Bot. 8: 117–137.Google Scholar
  33. Porembski, S., Brown, G. & Barthlott, W. 1996. A species-poor tropical sedge community: Afrotrilepis pilosa mats on inselbergs in West Africa. Nord. J. Bot. 16: 239–245.Google Scholar
  34. Porembski, S., Martinelli, G., Ohlemüller, R. & Barthlott, W. 1998. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Diversity Distributions 4: 107–119.Google Scholar
  35. Rudall, P. 1995. New records of secondary thickening in monocotyledons. IAWA J. 261–268.Google Scholar
  36. Schiller, P., Hartung, W. & Ratcliffe, R. G. 1998. Intracellular pH stability in the aquatic resurrection plant Chamaegigas intrepidus in the extreme environmental conditions that characterize its natural habitat. New Phytol. 140: 1–7.Google Scholar
  37. Schiller, P., Wolf, R. & Hartung, W. 1999. A scanning electron microscopical study of hydrated and desiccated submerged leaves of the aquatic resurrection plant Chamaegigas intrepidus. Flora 194: 97–102.Google Scholar
  38. Sherwin, H. W. & Farrant, J. M. 1996. Differences in rehydration of three desiccation-tolerant angiosperm species. Ann. Bot. 78: 703–710.Google Scholar
  39. Sherwin, H. W., Pammenter, N. W., February, E., van der Willigen, C. & Farrant, J. M. 1998. Xylem hydraulic characteristics, water relations and wood anatomy of the resurrection plant Myrothamnus flabellifolius Welw. Ann. Bot. 81: 567–575.Google Scholar
  40. Tuba, Z., Lichtenthaler, H. K., Csintalan, Z. & Pó cs, T. 1993a. Regreening of desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J. Plant Physiol. 142: 103–108.Google Scholar
  41. Tuba, Z., Lichtenthaler, H. K., Maroti, I. & Csintalan, Z. 1993b. Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J. Plant Physiol. 142: 742–748.Google Scholar
  42. Tuba, Z., Proctor, M. C. F. & Csintalan, Z. 1998. Ecophysiological responses of homoiochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Regulation 24: 211–217.Google Scholar
  43. Walter, H. 1931. Die Hydratur der Pflanze und ihre physiologischökologische Bedeutung. Gustav Fischer, Jena.Google Scholar
  44. Weber, H. 1963. Ñber die Wuchsform von Bulbostylis paradoxa (Spreng.) Lindm. (Cyperaceae). Abh. Math.-Nat. Kl. Akad. Wiss. Lit. Mainz 5: 267–284.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Stefan Porembski
    • 1
  • Wilhelm Barthlott
    • 2
  1. 1.Universität Rostock, Institut für BiodiversitätsforschungAllgemeine und Spezielle BotanikRostockGermany
  2. 2.Botanisches Institut der UniversitätBonnGermany

Personalised recommendations