Skip to main content
Log in

Multiphasic Approach for the Identification of the Different Classification Levels Of Pseudomonas savastanoi Pv. Phaseolicola

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The relationships between strains of Pseudomonas savastanoi pv. phaseolicola (P. sav. phaseolicola), P. syringae pv. tabaci (P. syr. tabaci) and P. syr. syringae which all cause disease on bean; the related species P. sav. glycinea and P. syr. actinidiae, and reference bacteria, were evaluated by studying the phenotypic and genetic diversity of a collection of 62 strains. All the P. sav. phaseolicola strains tested produced characteristic watersoaked lesions on bean pods. Other pathovars produced varying combinations of symptoms including necrotic lesions, with or without watersoaked centres and sunken tissue collapse of the lesion (P. syr. tabaci) and necrotic lesions with or without sunken collapse (P. syr. syringae). At the genomospecies level, all the strains of P. sav. phaseolicola, P. sav. glycinea and P. syr. tabaci, belonging to genomospecies 2, could be separated from P. syr. syringae strains (genomospecies 1) and P. syr. actinidiae strains (unknown genomospecies) by BOX-PCR and DNA/DNA hybridisation. To distinguish P. sav. phaseolicola, within genomospecies 2, from P. sav. glycinea and P. syr. tabaci, it was necessary to perform nutritional characterisations myo-inositol negative and p-hydroxy benzoate positive for P. sav. phaseolicola strains), PCR with specific primers designed from the tox region (positive for all of the P. sav. phaseolicola strains) and serotyping, as 71% of the P. sav. phaseolicola strains reacted as O-serogroup PHA1. Important intrapathovar variation was seen by genomic fingerprinting with REP and ERIC primers, as well as with RAPD primers (AE7 and AE10) and esterase profilings. While RAPD fingerprinting detected variability correlated with two race-associated evolutionary lines, REP, ERIC and esterase profiles revealed intrapathovar variation linked to some host origins, that separated the kudzu isolates, and the mungbean isolates, from the other P. sav. phaseolicola strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birch PRJ, Hyman LJ, Taylor R, Opio AF, Bragard C and Toth IK (1997) RAPD PCR-based differentiation of Xanthomonas campestris pv. phaseoli and Xanthomonas campestris pv. phaseoli var. fuscans. Eur J Plant Pathol 103: 809–814

    Google Scholar 

  • Brenner DJ, McWorter AC, Leete Knutson JK and Steigerwalt AG (1982) Escherichia vulneris: a species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15: 1133–1140

    PubMed  Google Scholar 

  • Bruijn FJ de (1992) Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhiobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58: 2180–2187

    PubMed  Google Scholar 

  • Bruijn FJ de (1996) Rep-PCR genomic fingerprinting of plant associated bacteria and computer-assisted phylogenetic analyses. In: Stacey G, Mullin B and Gresshoff PM (eds) Biology of Plant-Microbe Interactions, Proc 8th Symp on Molec. Plant-Microbe Interactions (pp 497–502) APS Press

  • Burkholder WH (1926) A new bacterial disease of the bean. Phytopathology 16: 915–928

    Google Scholar 

  • Cheng GY, Legard DE, Hunter JE and Burr TJ (1989) Modified bean pod assay to detect strains of Pseudomonas syringae pv. syringae that cause bacterial brown spot of snap bean. Plant Dis 73: 419–423

    Google Scholar 

  • Clayton EE (1950) Wildfire disease of tobacco and soybeans. Plant Dis Rep 34: 141–142

    Google Scholar 

  • Clerc A, Manceau C and Nesme X (1998) Comparison of Randomly Amplified Polymorphic DNA with Amplified Lenght Polymorphism to assess genetic diversity and genetic relatedness within genomospecies III. Appl Environ Microbiol 64: 1180–1187

    Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104: 410–433

    PubMed  Google Scholar 

  • Crosa JMD, Brenner DJ and Falkow S (1973) Use of a singlestrand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo-and heteroduplexes. J Bacteriol 115: 904–911

    PubMed  Google Scholar 

  • Cross JE, Kennedy BW, Lambert JW and Cooper RL (1966) Pathogenic races of the bacterial blight pathogen of sybeans, Pseudomonas glycinea. Plant Dis Rep 50: 557–560

    Google Scholar 

  • Descamps P and Véron M (1981) Une méthode de choix des caractères d'identification basée sur le théorème de Bayes et la mesure de l'information. Ann Inst Pasteur/Microbiol (Paris) 132B: 157–170

    Google Scholar 

  • Gardan L, Shafik H, Belouin S, Broch R, Grimont F and Grimont PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959) Int J Syst Bacteriol 49: 469–478

    PubMed  Google Scholar 

  • González AI, Ruiz ML and Polanco C (1998) A race-specific insertion of transposable element IS801 in Pseudomonas syringae pv. phaseolicola. Mol Plant Microb Interact 11: 423–428

    Google Scholar 

  • Goto M, Ichikawa K and Makino T (1981) New bacterial diseases of plants found in Japan. Shokbutsu Boeki 35: 270–274 (in Japanese)

    Google Scholar 

  • Grimont PAD (1988) Use of DNA reassociation in bacterial classification. Can J Microbiol 34: 541–546

    PubMed  Google Scholar 

  • Grondeau C, Saunier M, Poutier F and Samson R (1992) Evaluation of physiological and serological profiles of Pseudomonas syringae pv. pisi for pea blight identification. Plant Pathol 41: 495–505

    Google Scholar 

  • Guillorit-Rondeau C, Malandrin L and Samson R (1996) Identification of two serological flagellar types (H1 and H2) in Pseudomonas syringae pathovars. Eur J Plant Pathol 102: 99–104

    Google Scholar 

  • Harper S, Zewide N, Brown IR and Mansfield JW (1987) Histological, physiological and genetic studies of the responses of leaves and pods of Phaseolus vulgaris to the races of Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. coronafaciens. Physiol Mol Plant Pathol 31: 153–172

    Google Scholar 

  • Jansing H and Rudolph K (1990) A sensitive and quick test for determination of bean seed infestation by Pseudomonas syringae pv. phaseolicola. J Plant Dis Protect 97: 42–55

    Google Scholar 

  • Khan MSA, Ramsey MD, Corbière R, Infantino A, Porta-Puglia A, Bouznad Z and Scott ES (1999) Ascochyta blight of chickpea in Australia: identification, pathogenicity and mating type. Plant Pathol 48: 230–234

    Google Scholar 

  • Klement Z and Lovrekovich L (1961) Defense reactions induced by phytopathogenic bacteria in bean pods. Phytopathol Z 41: 217–227

    Google Scholar 

  • Lelliott RA, Billing E and Hayward AC (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29: 470–489

    PubMed  Google Scholar 

  • Lelliott RA and Stead DE (1987) Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Little E and Gilbertson RL (1997) Phenotypic and genotypic characters support placement of Pseudomonas syringae strains from tomato, celery, and cauliflower into distinct pathovars. In: Rudolph K, Burr TJ, Mansfield JW, Stead D, Vivian A and Von Kietzell J (eds) Pseudomonas syringae Pathovars and Related Pathogens (pp 542–547) Kluwer Academic Publishers

  • Louws FJ, Fulbright DW, Stephens CT and Bruijn FJ de (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60: 2286–2295

    PubMed  Google Scholar 

  • Louws FJ, Bell J, Medina-Mora cm, Smart CD, Opgenorth D, Ishimaru CA, Hausbeck MK, Bruijn FJ and Fulbright DW (1998) rep-PCR-mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology 88: 862–868

    Google Scholar 

  • Malandrin L and Samson R (1998) Isozyme analysis for the identification of Pseudomonas syringae pathovar pisi strains. J Appl Microbiol 84: 895–902

    Google Scholar 

  • Malandrin L and Samson R (1999) Serological and molecular size of flagellins of Pseudomonas syringae pathovars and related bacteria. Syst Appl Microbiol, 22: 534–545

    PubMed  Google Scholar 

  • Martin B, Humbert O, Camara M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R, Morrison DA, Boulnois GJ and Claverys J-P (1992) A highly conserved repeated DNA element located in the chromosome of Steptococcus pneumoniae. Nucleic Acids Res 20: 3479–3483

    PubMed  Google Scholar 

  • Mitchell RE (1976) Isolation and structure of a chlorosis-inducing toxin of Pseudomonas phaseolicola. Phytochemistry 15: 1941–1947

    Google Scholar 

  • Nuske J and Fritsche W (1989) Phaseolotoxin production by Pseudomonas syringae pv. phaseolicola: the influence of temperature. J Basic Microbiol 29: 441–447

    PubMed  Google Scholar 

  • Onfroy C, Tivoli B, Corbière R and Bouznad Z (1999) Cultural, molecular and pathogenic variability of Mycospharella pinodes and Phoma medicaginis var. pinodella isolates from dried pea (Pisum sativum) in France. Plant Pathol 48: 218–229

    Google Scholar 

  • Ovod V, Knirel YA, Samson R and Krohn KJ (1999) Immunochemical characterization and taxonomic evaluation of O polysaccharides of the lipopolysaccharides of Pseudomonas syringae strains from serogroup O1. J Bacteriol 181: 6937–6947

    PubMed  Google Scholar 

  • Palleroni NJ (1984) Genus I Pseudomonas Migula 1894. In: Krieg NR and Holt JG (eds) Bergey's Manual of Systematic Bacteriology (pp 141–199) Williams and Wilkins, Baltimore

    Google Scholar 

  • Prosen D, Hatziloukas E, Schaad NW and Panopoulos NJ (1993) Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed by polymerase chain reaction-based amplification of a phaseolotoxin gene region. Phytopathology 83: 965–970

    Google Scholar 

  • Rademaker JLW and Bruijn FJ de (1997) Characterisation and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In: Gaetano-Anolles G and Gresshoff PM (eds) DNA Markers: Protocols, Applications and Overviews (pp 151–171) J. Wiley & Sons, NY

    Google Scholar 

  • Rademaker JLW, Louws FJ and Bruijn FJ de (1998) Characterisation of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Akermans ADL, Elsas JD van and Bruijn FJ de (eds) Molecular Microbial Ecology Manual (pp 1–27) Kluwer Academic Publishers, the Netherlands

    Google Scholar 

  • Ribeiro R de LD, Hagedorn DJ and Durbin RD (1978) Characterization of a pathovar of Pseudomonas tabaci inciting wildfire of bean (Phaseolus vulgaris L.) in Brazil. In: INRA (ed) Proc 4th Int Conf Plant Pathogenic Bacteria. Vol II (p 733) Angers

  • Ribeiro R de LD, Hagedorn DJ, Durbin RD, Uchytil TF (1979) Characterization of the bacterium inciting bean wildfire in Brazil. Phytopathology 69: 208–212

    Google Scholar 

  • Rudolph K (1979) Bacterial brown spot disease of bush bean (Phaseolus vulgaris L.) in Germany, incited by Pseudomonas syringae Van Hall s. s. pathovar phaseoli. Z Pflanzenkr Pflanzenschutz 86: 75–85

    Google Scholar 

  • Sambrook J, Fritsch EF, and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, Second edition. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Samson R, Shafik H, Benjama A and Gardan L (1998) Description of the bacterium causing blight of leek as Pseudomonas syringae pv. porri (pv. nov.). Phytopathology 88: 844–850

    Google Scholar 

  • Sands DC, Schroth MN and Hildebrand DC (1970) Taxonomy of phytopathogenic pseudomonads. J Bacteriol 101: 9–23

    PubMed  Google Scholar 

  • Saunier M, Malandrin L and Samson R (1996) Distribution of Pseudomonas syringae pathovars into twenty-three O serogroups. Appl Environ Microbiol 62: 2360–2374

    PubMed  Google Scholar 

  • Sawada H, Takeuchi T and Matsuda I (1997) Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornitine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences. Appl Environ Microbiol 63: 282–288

    PubMed  Google Scholar 

  • Sinden SL and Durbin RD (1969) Some comparison of chlorosisinducing pseudomonad toxins. Phytopathology 59: 249–250

    Google Scholar 

  • Tamura K, Takikawa S, Tsuyumu S and Goto M (1989) Characterization of the toxin produced by Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker. Ann Phytopathol Soc Japan 55: 512

    Google Scholar 

  • Taylor JD, Teverson DM, Allen DJ and Pastor-Corrales MA (1996) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45: 469–478

    Google Scholar 

  • Tourte C (1993) Epidémiologie de Pseudomonas syringae pv. phaseolicola et mise au point de la PCR pour sa détection. PhD thesis. Université Claude Bernard-Lyon I, Lyon, France

    Google Scholar 

  • Tourte C and Manceau C (1995) A strain of Pseudomonas syringae which does not belong to pathovar phaseolicola produces phaseolotoxin. Eur J Plant Pathol 101: 483–490

    Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K and Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407–438

    PubMed  Google Scholar 

  • Versalovic J, Koeuth T and Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19: 6823–6831

    PubMed  Google Scholar 

  • Versalovic J, Schneider M, Bruijn FJ de and Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequencebased Polymerase Chain Reaction. Method Mol Cell Biol 5: 25–40

    Google Scholar 

  • Völksch B and Weingart H (1997) Comparison of ethyleneproducing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea. Eur J Plant Pathol 103: 795–802

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackenbrandt E, Starr MP and Trüper HG (1987) International Commitee on Systematic Bacteriology. Report of the ad hoc commitee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464

    Google Scholar 

  • Weingart H and Völksch B (1997) Genetic fingerprinting of Pseudomonas syringae pathovars using ERIC-, REP-, and IS50-PCR. J Phytopathol 145: 339–345

    Google Scholar 

  • Welsh J and McCelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213–7218

    PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA and Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, A.S.d.A., Corbière, R., Gardan, L. et al. Multiphasic Approach for the Identification of the Different Classification Levels Of Pseudomonas savastanoi Pv. Phaseolicola. European Journal of Plant Pathology 106, 715–734 (2000). https://doi.org/10.1023/A:1026563831461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026563831461

Navigation